Genetic similarity in male friendships

1989 ◽  
Vol 10 (5) ◽  
pp. 361-373 ◽  
Author(s):  
J. Philippe Rushton
2017 ◽  
Vol 54 ◽  
pp. 146-156
Author(s):  
T. M. Suprovych ◽  
M. P. Suprovych ◽  
R. V. Kolinchuk

Introduction. The main direction of increasing the productivity of milk is to increase the proportion of heredity of the Holstein breed in the genotype of cows. Industrial breeds in Ukraine are improving due to the increase in the Holstein inheritance in the genotype of cows. The "holsteinization" of the most widespread domestic Black-and-White diary breed is intensively conducted. Currently, the percentage of heredity from Holstein is 90% or more. The negative effect of "holsteinization" appeared in reducing the resistance of animals to diseases that led to the spread of necrobacterial pathology. The control of the spread of necrobacteriosis can be based on genetic markers. Important markers can be the allele of the BoLA-DRB3.2 gene responsible for the formation of adaptive immunity. Due to the ambiguity of the results of "holsteinization", the following tasks were solved: To study the genetic structure of the herd for the BoLA-DRB3.2 gene at the beginning of the "holsteinization" and now. To compare the detected genetic structures with the alleles spectrum of North American Holstein and identify quantitative and qualitative changes in the structure of the herd genotype. To determine the effect of "holsteinization" on the dynamics of milk production and the state of morbidity by necrobacteriosis. Materials and methods of research. Comparison of alleles of population of the Ukrainian Black-Pied Dairy (UBPD) breed and Holstein breed was conducted to detect the consequences of "holsteinization" on milk yield and incidence of necrobacteriosis. The data of the allelic polymorphism of the BoLA-DRB3.2 gene of the UBPD10 (2010, n = 162), UBPD15 (2015, n = 114) and two Holstein populations of the USA and Canada were collected. The allelic spectrum was determined by the PCR-RFLP method. The amplification of the BoLA-DRB3.2 gene was performed using 2-step PCR with the use of primers HLO-30, HLO-31 and HLO-32 and allele-specific PCR. Restriction analysis was performed with endonuclease RsaI, HaeIII, BstYI (XhoII). Restriction fragments were separated by electrophoresis in 4% agarose gel. Counting of allele frequencies was performed taking into account the number of homozygotes and heterozygotes found for the corresponding alleles. To determine the phylogenetic relationships between the populations of the studied herds, genetic distance and genetic similarity were determined by the M. Nei method. Individual dairy productivity of cows was estimated for all lactation (regardless of its duration). Average milk yields were determined as the total volume of milk produced divided by the number of dairy cows. Results and discussion. The breeding measures carried out led to the accumulation of alleles characteristic of the Holstein breed. For Holstein, there are eight alleles with a frequency of more than 4%. It is alleles *03, *07, *08, *11, *16, *22, *23, *24. A high degree of consolidation of weighty alleles can be outlined. In total they occupy 84,6% of allele spectrum of the population. Consolidation of such alleles in the herd of the Ukrainian Black-and-White diary breed is much lower - only 52.2%, although it increased by 6.2% over 5 years. Alleles *10, *13 and *28 are "weighty" for the Ukrainian Black-and-White diary breed, but they are almost non-existent in Holsteins. The genetic similarity of the herd UBPD15 and Holstein increased by ΔI = 0,085, and the genetic distance between the herds of the UBPD increased by ΔD = 0,085 for 5 years. The comparison of the allele spectrum of Holstein and the Ukrainian Black-and-White diary breed shows both the accumulation and the elimination of alleles associated with high productivity. The largest consolidation is typical for alleles *24 (+ 6.75%) and *16 (+ 4.65%). The frequency of "milk" alleles *22 and *08 decreased, respectively, by 4.14 and 1.27%. Alleys, which cause low milk productivity, have the following dynamics: * 23 + 2.53%, *11 – 0.67 and *28 – 0.26. The accumulation of alleles *16 and *23 (7.18%) was found that are associated with predisposition to necrobacteriosis and elimination of *03 and *22 alleles (4.75%) that influence on this disease. Conclusions. It is determined that the role of alleles characteristic for Holstein is increasing in the the Ukrainian Black-and-White diary herd. Breeding measures for holsteinization are conducted in the right direction. There is accumulation of alleles associated with high milk productivity and predisposition to necrobacteriosis. It positively affects the growth of milk production and negatively affects the incidence of necrobacteriosis.


Genome ◽  
2011 ◽  
Vol 54 (1) ◽  
pp. 81-89 ◽  
Author(s):  
S. S. Xu ◽  
C. G. Chu ◽  
M. O. Harris ◽  
C. E. Williams

Near-isogenic lines (NILs) are useful for plant genetic and genomic studies. However, the strength of conclusions from such studies depends on the similarity of the NILs’ genetic backgrounds. In this study, we investigated the genetic similarity for a set of NILs developed in the 1990s to study gene-for-gene interactions between wheat ( Triticum aestivum L.) and the Hessian fly ( Mayetiola destructor (Say)), an important pest of wheat. Each of the eight NILs carries a single H resistance gene and was created by successive backcrossing for two to six generations to susceptible T. aestivum ‘Newton’. We generated 256 target region amplification polymorphism (TRAP) markers and used them to calculate genetic similarity, expressed by the Nei and Li (NL) coefficient. Six of the NILs (H3, H5, H6, H9, H11, and H13) had the highly uniform genetic background of Newton, with NL coefficients from 0.97 to 0.99. However, genotypes with H10 or H12 were less similar to Newton, with NL coefficients of 0.86 and 0.93, respectively. Cluster analysis based on NL coefficients and pedigree analysis showed that the genetic similarity between each of the NILs and Newton was affected by both the number of backcrosses and the genetic similarity between Newton and the H gene donors. We thus generated an equation to predict the number of required backcrosses, given varying similarity of donor and recurrent parent. We also investigated whether the genetic residues of the donor parents that remained in the NILs were related to linkage drag. By using a complete set of ‘Chinese Spring’ nullisomic-tetrasomic lines, one third of the TRAP markers that showed polymorphism between the NILs and Newton were assigned to a specific chromosome. All of the assigned markers were located on chromosomes other than the chromosome carrying the H gene, suggesting that the genetic residues detected in this study were not due to linkage drag. Results will aid in the development and use of near-isogenic lines for studies of the functional genomics of wheat.


IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
João P. M. Araújo ◽  
Mitsuru G. Moriguchi ◽  
Shigeru Uchiyama ◽  
Noriko Kinjo ◽  
Yu Matsuura

AbstractThe entomopathogenic genus Ophiocordyceps includes a highly diverse group of fungal species, predominantly parasitizing insects in the orders Coleoptera, Hemiptera, Hymenoptera and Lepidoptera. However, other insect orders are also parasitized by these fungi, for example the Blattodea (termites and cockroaches). Despite their ubiquity in nearly all environments insects occur, blattodeans are rarely found infected by filamentous fungi and thus, their ecology and evolutionary history remain obscure. In this study, we propose a new species of Ophiocordyceps infecting the social cockroaches Salganea esakii and S. taiwanensis, based on 16 years of collections and field observations in Japan, especially in the Ryukyu Archipelago. We found a high degree of genetic similarity between specimens from different islands, infecting these two Salganea species and that this relationship is ancient, likely not originating from a recent host jump. Furthermore, we found that Ophiocordyceps lineages infecting cockroaches evolved around the same time, at least twice, one from beetles and the other from termites. We have also investigated the evolutionary relationships between Ophiocordyceps and termites and present the phylogenetic placement of O. cf. blattae. Our analyses also show that O. sinensis could have originated from an ancestor infecting termite, instead of beetle larvae as previously proposed.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1424
Author(s):  
Magdalena Cieplak ◽  
Sylwia Okoń ◽  
Krystyna Werwińska

The assessment of the genetic diversity of cultivated varieties is a very important element of breeding programs. This allows the determination of the level of genetic differentiation of cultivated varieties, their genetic distinctiveness, and is also of great importance in the selection of parental components for crossbreeding. The aim of the present study was to determine the level of genetic diversity of oat varieties currently grown in Central Europe based on two marker systems: ISSR and SCoT. The research conducted showed that both these types of markers were suitable for conducting analyses relating to the assessment of genetic diversity. The calculated coefficients showed that the analyzed cultivars were characterized by a high genetic similarity. However, the UPGMA and PCoA analyses clearly indicated the distinctiveness of the breeding programs conducted in Central European countries. The high genetic similarity of the analyzed forms allow us to conclude that it is necessary to expand the genetic pool of oat varieties. Numerous studies show that landraces may be the donor of genetic variation.


2006 ◽  
Vol 13 (2) ◽  
pp. 104-115 ◽  
Author(s):  
F.-X. Lopez-Labrador ◽  
M. A. Bracho ◽  
M. Berenguer ◽  
M. Coscolla ◽  
J. M. Rayon ◽  
...  

Genome ◽  
2000 ◽  
Vol 43 (4) ◽  
pp. 724-727 ◽  
Author(s):  
Wenguang Cao ◽  
G Scoles ◽  
P Hucl ◽  
R N Chibbar

The genetic relationships among the five groups of hexaploid wheat: common, spelta, macha, vavilovii, and semi-wild wheat (SWW) are not clear. Random amplified polymorphic DNA (RAPD) analysis was used to assess phylogenetic relationships among these five morphological groups of hexaploid wheat. RAPD data were analyzed using the NTSYS-PC computer program to generate Jaccard genetic similarity coefficients. A dendrogram based on RAPD analysis grouped 15 accessions into five distinct clusters. These results are in agreement with those based on morphological classification, suggesting that common wheat is most closely related to SWW, followed by spelta, vavilovii, and macha.Key words: RAPD, macha, spelta, vavilovii, semi-wild wheat, phylogenetic relationships.


2009 ◽  
Vol 15 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Katarzyna Kubiak

Genetic diversity ofAvena strigosaSchreb. ecotypes on the basis of isoenzyme markersGenetic diversity was analyzed in 19 ecotypes of the diploid oatA. strigosaoriginating from various geographical regions of the world. Six isoenzyme systems (AAT, ACP, EST, LAP, MDH, PX) were studied and 16 loci were identified. Only two loci (Est4andMdh2) were polymorphic. Ecotypes were characterized by the percentage of polymorphic loci (P=3.3%), the mean number of alleles per locus (A=1.04) and intrapopulation diversity (HS=0.013). Total genetic diversity (HT=0.07) and interpopulation diversity (DST=0.057) were examined as well. The value of the coefficient of gene differentiation (GST=0.821) indicated that diversity among populations was an important contributor to total variability. Genetic similarity betweenA. strigosapopulations was very high (IN=0.94). Cluster analysis did not demonstrate strongly differentiated groups among the ecotypes examined.


Sign in / Sign up

Export Citation Format

Share Document