Deoxyribonuclease II purified from the isolated lysosomes of porcine spleen and from porcine liver homogenates. Comparison with deoxyribonuclease II purified from porcine spleen homogenates

Author(s):  
Ta-Hsiu Liao ◽  
Wen-Chieh Liao ◽  
Hui-Chen Chang ◽  
Kuo-Shyan Lu
2020 ◽  
Vol 307 ◽  
pp. 110136
Author(s):  
Migiwa Asano ◽  
Naoki Yoshioka ◽  
Azumi Kuse ◽  
Natsumi Kuwahara ◽  
Yuki Nakabayashi ◽  
...  

2015 ◽  
Author(s):  
Amanda C. Outhouse ◽  
Kyle Grubbs ◽  
Christopher K. Tuggle ◽  
Jack C. M. Dekkers ◽  
Nicholas K. Gabler ◽  
...  

1977 ◽  
Vol 32 (11-12) ◽  
pp. 908-912 ◽  
Author(s):  
H. J. Schmidt ◽  
U. Schaum ◽  
J. P. Pichotka

Abstract The influence of five different methods of homogenisation (1. The method according to Potter and Elvehjem, 2. A modification of this method called Potter S, 3. The method of Dounce, 4. Homogenisation by hypersonic waves and 5. Coarce-grained homogenisation with the “Mikro-fleischwolf”) on the absolute value and stability of oxygen uptake of guinea pig liver homogenates has been investigated in simultaneous measurements. All homogenates showed a characteristic fall of oxygen uptake during measuring time (3 hours). The modified method according to Potter and Elvehjem called Potter S showed reproducible results without any influence by homogenisation intensity.


1985 ◽  
Vol 225 (1) ◽  
pp. 51-58 ◽  
Author(s):  
T Saermark ◽  
N Flint ◽  
W H Evans

Endosome fractions were isolated from rat liver homogenates on the basis of the subcellular distribution of circulating ligands, e.g. 125I-asialotransferrin internalized by hepatocytes by a receptor-mediated process. The distribution of endocytosed 125I-asialotransferrin 1-2 min and 15 min after uptake by liver and a monensin-activated Mg2+-dependent ATPase activity coincided on linear gradients of sucrose and Nycodenz. The monensin-activated Mg2+-ATPase was enriched relative to the liver homogenates up to 60-fold in specific activity in the endosome fractions. Contamination of the endosome fractions by lysosomes, endoplasmic reticulum, mitochondria, plasma membranes and Golgi-apparatus components was low. By use of 9-aminoacridine, a probe for pH gradients, the endosome vesicles were shown to acidify on addition of ATP. Acidification was reversed by addition of monensin. The results indicate that endosome fractions contain an ATP-driven proton pump. The ionophore-activated Mg2+-ATPase in combination with the presence of undegraded ligands in the endosome fractions emerge as linked markers for this new subcellular organelle.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jens Ziegle ◽  
Alfredo Illanes ◽  
Axel Boese ◽  
Michael Friebe

AbstractDuring thermal ablation in a target tissue the information about temperature is crucial for decision making of successful therapy. An observable temporal and spatial temperature propagation would give a visual feedback of irreversible cell damage of the target tissue. Potential temperature features in ultrasound (US) B-Mode image sequences during radiofrequency (RF) ablation in ex-vivo porcine liver were found and analysed. These features could help to detect the transition between reversible and irreversible damage of the ablated target tissue. Experimental RF ablations of ex-vivo porcine liver were imaged with US B-Mode imaging and image sequences were recorded. Temperature was simultaneously measured within the liver tissue around a bipolar RF needle electrode. In the B-Mode images, regions of interest (ROIs) around the centre of the measurement spots were analysed in post-processing using average gray-level (AVGL) compared against temperature. The pole of maximum energy level in the time-frequency domain of the AVGL changes was investigated in relation to the measured temperatures. Frequency shifts of the pole were observed which could be related to transitions between the states of tissue damage.


1954 ◽  
Vol 206 (1) ◽  
pp. 471-481 ◽  
Author(s):  
Ivan D. Frantz ◽  
Nancy L.R. Bucher ◽  
Henny S. Schneider ◽  
Naomi H. McGovern ◽  
Ruth Kingston

2021 ◽  
Vol 22 (2) ◽  
pp. 483
Author(s):  
Marija Ivanov ◽  
Abhilash Kannan ◽  
Dejan S. Stojković ◽  
Jasmina Glamočlija ◽  
Ricardo C. Calhelha ◽  
...  

Candidaalbicans represents one of the most common fungal pathogens. Due to its increasing incidence and the poor efficacy of available antifungals, finding novel antifungal molecules is of great importance. Camphor and eucalyptol are bioactive terpenoid plant constituents and their antifungal properties have been explored previously. In this study, we examined their ability to inhibit the growth of different Candida species in suspension and biofilm, to block hyphal transition along with their impact on genes encoding for efflux pumps (CDR1 and CDR2), ergosterol biosynthesis (ERG11), and cytotoxicity to primary liver cells. Camphor showed excellent antifungal activity with a minimal inhibitory concentration of 0.125–0.35 mg/mL while eucalyptol was active in the range of 2–23 mg/mL. The results showed camphor’s potential to reduce fungal virulence traits, that is, biofilm establishment and hyphae formation. On the other hand, camphor and eucalyptol treatments upregulated CDR1;CDR2 was positively regulated after eucalyptol application while camphor downregulated it. Neither had an impact on ERG11 expression. The beneficial antifungal activities of camphor were achieved with an amount that was non-toxic to porcine liver cells, making it a promising antifungal compound for future development. The antifungal concentration of eucalyptol caused cytotoxic effects and increased expression of efflux pump genes, which suggests that it is an unsuitable antifungal candidate.


Sign in / Sign up

Export Citation Format

Share Document