Biomolecules in the gas phase. III. Multiphoton ionization mass spectra of phenylthiohydantoin amino acids and free amino acids

Author(s):  
Jürgen Grotemeyer ◽  
Klaus Walter ◽  
Ulrich Boesl ◽  
Edward W. Schlag
2020 ◽  
Vol 8 ◽  
Author(s):  
Takashi Nakakoji ◽  
Kaori Yoshino ◽  
Kazuki Izutsu ◽  
Hirofumi Sato ◽  
Hiroyuki Miyake ◽  
...  

A series of copper(II) complexes with chiral tetradentate ligands, N,N′-ethylene- bis(S-amino acid methyl amide or methyl ester) prepared from S-alanine, S-phenylalanine, S-valine or S-proline, was generated in methanol. The copper complexes provided three component complexes in the presence of a free chiral amino acid. The enantioselectivity for the amino acid was evaluated by electrospray ionization-mass spectrometry coupled with the deuterium-labeled enantiomer method and these copper complexes were found to exhibit high enantioselectivity for free amino acids having bulky side chains. This result suggests that steric interaction between the tetradentate ligand and free amino acid was a major factor in chiral recognition. The copper complex with a chiral tetradentate ligand prepared from S-proline showed opposite enantioselectivity to copper complexes consisting of tetradentate ligands prepared from other S-amino acids. The conformational difference of the tetradentate ligand in the copper complex was found to be significant for enantioselectivity.


2021 ◽  
Vol 21 (11) ◽  
pp. 8775-8790
Author(s):  
Jose Ruiz-Jimenez ◽  
Magdalena Okuljar ◽  
Outi-Maaria Sietiö ◽  
Giorgia Demaria ◽  
Thanaporn Liangsupree ◽  
...  

Abstract. Primary biological aerosol particles (PBAPs) play an important role in the interaction between biosphere, atmosphere, and climate, affecting cloud and precipitation formation processes. The presence of pollen, plant fragments, spores, bacteria, algae, and viruses in PBAPs is well known. In order to explore the complex interrelationships between airborne and particulate chemical tracers (amino acids, saccharides), gene copy numbers (16S and 18S for bacteria and fungi, respectively), gas phase chemistry, and the particle size distribution, 84 size-segregated aerosol samples from four particle size fractions (< 1.0, 1.0–2.5, 2.5–10, and > 10 µm) were collected at the SMEAR II station, Finland, in autumn 2017. The gene copy numbers and size distributions of bacteria, Pseudomonas, and fungi in biogenic aerosols were determined by DNA extraction and amplification. In addition, free amino acids (19) and saccharides (8) were analysed in aerosol samples by hydrophilic interaction liquid chromatography–mass spectrometry (HILIC-MS). Different machine learning (ML) approaches, such as cluster analysis, discriminant analysis, neural network analysis, and multiple linear regression (MLR), were used for the clarification of several aspects related to the composition of biogenic aerosols. Clear variations in composition as a function of the particle size were observed. In most cases, the highest concentration values and gene copy numbers (in the case of microbes) were observed for 2.5–10 µm particles, followed by > 10, 1–2.5, and < 1.0 µm particles. In addition, different variables related to the air and soil temperature, the UV radiation, and the amount of water in the soil affected the composition of biogenic aerosols. In terms of interpreting the results, MLR provided the greatest improvement over classical statistical approaches such as Pearson correlation among the ML approaches considered. In all cases, the explained variance was over 91 %. The great variability of the samples hindered the clarification of common patterns when evaluating the relation between the presence of microbes and the chemical composition of biogenic aerosols. Finally, positive correlations were observed between gas-phase VOCs (such as acetone, toluene, methanol, and 2-methyl-3-buten-2-ol) and the gene copy numbers of microbes in biogenic aerosols.


Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 397 ◽  
Author(s):  
Sabina Lachowicz ◽  
Rafał Wiśniewski ◽  
Ireneusz Ochmian ◽  
Katarzyna Drzymała ◽  
Stanisław Pluta

The aim of the present work was to evaluate for content of phytochemicals (monophosphate nucleotides, free amino acids, polyphenols), and for anti-microbiological, anti-diabetic (ability to inhibit pancreatic lipase, α-glucosidase, and α-amylase), and antioxidant activities in seven selected fruit and fruit fractions of Amelanchier alnifolia. Most of the fruit and fruit fractions analyzed in this study have not been examined in this respect until now. The content of monophosphate nucleotides and free amino acids were tested by ultra-performance liquid chromatography coupled with photodiode array detector and electrospray ionization-mass spectrometry (UPLC-PDA-ESI-MS). The distribution of the examined compounds and biological activity differed significantly depending on the tested fruit and parts of the fruit. Cultivars “Smoky” and “Thiessen” had a high content of essential free amino acids, monophosphate nucleotides, and the highest antioxidant activity. They were also accountable for the high ability to inhibit Enterococcus hirae (anti-bacterial activity), of activity toward α-amylase, α-glucosidase, and pancreatic lipase. Moreover, the fruit peel was abundant in polyphenolic compounds and showed the highest antioxidative activity, which were strongly correlated with each other. In addition, the peel was characterized by a high concentration of monophosphate nucleotides, free amino acids, and were responsible above all for the strong ability to inhibit pancreatic lipase enzymes contributing to the development of obesity. The seeds were rich in uridine 5’-monophosphate, and total essential and non-essential free amino acids, whose contents correlated with the inhibitory activity toward α-amylase and α-glucosidase. The fruit flesh showed a high content of total free amino acids (hydroxy-L-proline, O-phosphoethanolamine, L-citruline). There was a positive correlation between antioxidant capacity and the content of polyphenolic compounds, nucleotide, and ability to inhibit pancreatic lipase, and between anti-hyperglycemic and free amino acids in fruits and fruit fractions. Therefore, the tested fruit of A. alnifolia and their fractions could be essential ingredients of new functional products and/or probiotic food.


RSC Advances ◽  
2021 ◽  
Vol 11 (57) ◽  
pp. 36237-36241
Author(s):  
Takashi Nakakoji ◽  
Hirofumi Sato ◽  
Daisuke Ono ◽  
Hiroyuki Miyake ◽  
Eiko Mieda ◽  
...  

A mass spectrometric method for the simultaneous analysis of the enantiomeric excess of free amino acids, without chromatographic separation, was demonstrated using a quasi-racemic mixture of deuterium-labelled and unlabelled chiral Cu(ii) complexes.


1991 ◽  
Vol 83 (1) ◽  
pp. 136-143 ◽  
Author(s):  
L. Bray ◽  
D. Chriqui ◽  
K. Gloux ◽  
D. Le Rudulier ◽  
M. Meyer ◽  
...  

Diabetes ◽  
1985 ◽  
Vol 34 (8) ◽  
pp. 812-815 ◽  
Author(s):  
L. Borghi ◽  
R. Lugari ◽  
A. Montanari ◽  
P. Dall'Argine ◽  
G. F. Elia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document