In vitro release of cytotoxic agents from ion exchange resins

1989 ◽  
Vol 8 (3) ◽  
pp. 251-257 ◽  
Author(s):  
C. Jones ◽  
M.A. Burton ◽  
B.N. Gray ◽  
J. Hodgkin
2004 ◽  
Vol 5 (1) ◽  
pp. 18-30 ◽  
Author(s):  
Carlos A. Muñoz ◽  
Anna Torrado ◽  
Manuel Valiente ◽  
Wu Zhang ◽  
Yiming Li

Abstract The aim of the present study was to determine the ability of a dentifrice containing a mixture of ion-exchange resins (named NMTD), which supplies calcium, fluoride, phosphate, and zinc ions, to promote remineralization and/or inhibit demineralization of dental human enamel in a pH cycling model in vitro. A fluoride toothpaste was used as the control. The enamel specimens were tested for microhardness before and after 10 days and 16 days of the demineralizing and remineralizing treatments. The results of this study showed both dentifrices were effective in limiting in vitro enamel demineralization although the effects were not significantly different from each other. Inclusion of calcium and phosphate ion-exchange resins in the dentifrice containing a fluoride ion-exchange resin maintained a similar net outcome of the conventional dentifrice in the demineralization/ remineralization process under the experimental conditions employed. Citation Torrado A, Valiente M, Zhang W, et. al. Remineralization Potential of a New Toothpaste Formulation: An In-Vitro Study. J Contemp Dent Pract 2004 February;(5)1:018-030.


1985 ◽  
Vol 9 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Eugene C. Cameron ◽  
Marianna Leung ◽  
Hildegard Erber ◽  
John D.E. Price

1964 ◽  
Vol 35 (4) ◽  
pp. 296-301 ◽  
Author(s):  
Erwin M. Schaffer ◽  
Charles W. Schindler ◽  
Richard B. McHugh

Clay Minerals ◽  
2011 ◽  
Vol 46 (4) ◽  
pp. 613-619 ◽  
Author(s):  
M. Betsiou ◽  
G. Bantsis ◽  
I. Zoi ◽  
C. Sikalidis

AbstractThis investigation was carried out to determine whether the adsorptive and ion-exchange properties of faujasite (FAU) could be used to delivery locally the anticancer drugs gemcitanine hydrochloride (dFdU.HCl) and oxaliplatin (DACH-Pt). A soaking procedure was used for the determination of the maximum adsorption capacity of FAU and the mechanism described here was achieved. 274 mg dFdU.HCl/g FAU were adsorbed in 16 h, while 48 h were needed for the adsorption of 79.7 mg DACH-Pt/g FAU. Drug release studies were carried out by soaking the samples of loaded FAU in simulation body fluids (SBF). After only one hour 76% of dFdU.HCl was released while the release of DACH-Pt from the FAU was more normal since 38% of DACH-Pt was released in the first 24 h.


2020 ◽  
Vol 27 (11) ◽  
pp. 1102-1113 ◽  
Author(s):  
Hongfei Liu ◽  
Jie Zhu ◽  
Pengyue Bao ◽  
Yueping Ding ◽  
Jiapeng Wang ◽  
...  

Background: Protein drugs have disadvantages, such as short half-lives, unstable biological activities, and low utilization efficiency. Objective: In this paper, a porous ion-responsive targeted drug delivery system was designed, combining biodegradable carriers with ion exchange technology to overcome problems for protein drug delivery systems. Methods: Carboxymethyl Chitosan Porous Microspheres (CCPM) were prepared using an emulsification- chemical crosslinking method. Chitosan-bovine serum albumin-carboxymethyl chitosan porous microspheres (CBCCPM) were prepared using a dynamic ion exchange method and static self-assembly technology. Results: CCPM were round in appearance mostly with a particle size distribution of 5-15 μm, which facilitates passive targeting to the lungs. CCPM had a total ion exchange capacity of 9.97 ± 0.07 mmol/g and showed a strong ability to attract and contain positively charged drugs. A potentiometric titration curve was used to identify the dissociation behavior of exchangeable groups on the microspheres; the optimal pH for ion exchange of microspheres was ≥ 4.3. CCPM had ion responsiveness, in vitro degradation ability, thermal stability and biocompatibility. In vitro release results confirmed that BSA and CCPM were mainly bound together by ionic bonds and the drug release mechanism of the self-assembled microspheres changed from particle diffusion to membrane diffusion under pH 7.4 PBS solution containing 0.02% Tween 80. Circular dichroism and sodium dodecyl-sulfate polyacrylamide gel electrophoresis results showed no significant change in the secondary structure and purity of BSA after binding to CCPM. The cumulative in vitro release rate of microspheres after 24 h was 86.78%. Conclusion: In this paper, CBCCPM, a porous ion-responsive targeted drug delivery system, was designed.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2481 ◽  
Author(s):  
Tehyung Kim ◽  
Sueli de Oliveira Silva Lautenschlager ◽  
Qiuyue Ma ◽  
Kathrin Eller ◽  
Marion Julia Pollheimer ◽  
...  

Ion-exchange resins are commonly used to manage complications of chronic kidney disease, such as hyperphosphatemia, hyperkalemia, and hypercholesterolemia. Occasionally, these drugs can irritate the gastrointestinal lining and cause life-threatening intestinal necrosis. Currently, the pathophysiology of drug crystal-induced intestinal necrosis is not well understood. We hypothesized that crystals of ion-exchange resins like sevelamer, polystyrene sulfonate, and cholestyramine can trigger the formation of neutrophil and monocyte extracellular traps by contributing to intestinal barrier dysfunction. Light and fluorescence microscopy of the colonic resection specimen from a patient with chronic kidney disease revealed severe intestinal necrosis, ulceration, sevelamer crystals, and inflammation upon oral intake of sevelamer, as well as the formation of neutrophil extracellular traps in proximity to small sevelamer crystals. Indeed, drug crystals reduced metabolic activity and induced barrier dysfunction and cell death in human intestinal epithelial cells in vitro. In addition, drug crystals triggered the release of neutrophil and monocyte extracellular traps. Taken together, these data raise the possibility that besides other factors including chronic kidney disease, diabetes mellitus, and hypertension, drug crystals may further amplify a pre-existing barrier dysfunction and necroinflammation in a crescendo of local intestinal necrosis and systemic inflammation/infection, as occasionally observed in patients on ion-exchange resin therapy.


1963 ◽  
Vol 46 (12) ◽  
pp. 1362-1366 ◽  
Author(s):  
L.F. Edmondson ◽  
D.H. Keefer ◽  
F.W. Douglas ◽  
J.Y. Harris ◽  
E. Dodson

Sign in / Sign up

Export Citation Format

Share Document