Characterization of amorphous surface layers in Fe implanted with Ti and C

Author(s):  
J.A. Knapp ◽  
D.M. Follstaedt ◽  
B.L. Doyle
Author(s):  
R. Vincent

Microanalysis and diffraction on a sub-nanometre scale have become practical in modern TEMs due to the high brightness of field emission sources combined with the short mean free paths associated with both elastic and inelastic scattering of incident electrons by the specimen. However, development of electron diffraction as a quantitative discipline has been limited by the absence of any generalised theory for dynamical inelastic scattering. These problems have been simplified by recent innovations, principally the introduction of spectrometers such as the Gatan imaging filter (GIF) and the Zeiss omega filter, which remove the inelastic electrons, combined with annual improvements in the speed of computer workstations and the availability of solid-state detectors with high resolution, sensitivity and dynamic range.Comparison of experimental data with dynamical calculations imposes stringent requirements on the specimen and the electron optics, even when the inelastic component has been removed. For example, no experimental CBED pattern ever has perfect symmetry, departures from the ideal being attributable to residual strain, thickness averaging, inclined surfaces, incomplete cells and amorphous surface layers.


1981 ◽  
Vol 11 ◽  
Author(s):  
George G. Wicks ◽  
Barbara M. Robnett ◽  
W. Duncan Rankin

Leachability is one of the most important properties of solidified nuclear waste forms because it provides information on the performance and the subsequent safety and reliability that the waste products will possess. One of the most important experimental findings in the leachability field has been the discovery and subsequent detailed characterization of protective surface layers that form on waste glass during leaching. These layers can have a beneficial effect on product performance while in storage by improving productdurability with time. As a result of surface layer formation and the effects on subsequent product leaching characteristics, new qualitative and quantitative leaching models have recently been proposed.


1994 ◽  
Vol 339 ◽  
Author(s):  
V. Heera ◽  
R. Kögler ◽  
W. Skorupa ◽  
J. Stoemenos

ABSTRACTThe evolution of the damage in the near surface region of single crystalline 6H-SiC generated by 200 keV Ge+ ion implantation at room temperature (RT) was investigated by Rutherford backscattering spectroscopy/chanelling (RBS/C). The threshold dose for amorphization was found to be about 3 · 1014 cm-2, Amorphous surface layers produced with Ge+ ion doses above the threshold were partly annealed by 300 keV Si+ ion beam induced epitaxial crystallization (IBIEC) at a relatively low temperature of 480°C For comparison, temperatures of at least 1450°C are necessary to recrystallize amorphous SiC layers without assisting ion irradiation. The structure and quality of both the amorphous and recrystallized layers were characterized by cross-section transmission electron microscopy (XTEM). Density changes of SiC due to amorphization were measured by step height measurements.


2018 ◽  
Vol 156 ◽  
pp. 03001 ◽  
Author(s):  
Meiti Pratiwi ◽  
Godlief F. Neonufa ◽  
Tirto Prakoso ◽  
Tatang H. Soerawidjaja

In previous study, by heating magnesium basic soaps from palm stearine will decarboxylated and produced biohydrocarbon. The frequent method to produced metal soaps from triglyceride in laboratory scale is metathesis. This process is less favored because this method would produced large amounts of salt waste and hard to develop into bigger scale. This study investigated the process and characterization of magnesium soaps from coconut oil and magnesium hydroxide via direct reaction method at 185 °C for 3 and 6 hours. The resulting soaps were washed with water and methanol, then dried. This process yield more than 80%-w metal soaps, acid values lower than 6 mg KOH/g and pH 9.2. Based on Thermogravimetry Analysis (TGA) and SEM results, the initial decomposition temperature of these metal soaps were at 300 °C and have amorphous surface morphology. From decarboxylation test of magnesium basic soaps indicate great potency as feed for biohydrocarbon production.


2020 ◽  
Vol 532 (8) ◽  
pp. 1900586
Author(s):  
Alexander A. Starostin ◽  
Victor V. Shangin ◽  
Alexander T. Lonchakov ◽  
Artem N. Kotov ◽  
Semyon B. Bobin

2000 ◽  
Vol 182 (2) ◽  
pp. 653-660 ◽  
Author(s):  
E. Theodossiu ◽  
H. Baumann ◽  
M. Klimenkov ◽  
W. Matz ◽  
K. Bethge

Sign in / Sign up

Export Citation Format

Share Document