Amortization and Recrystallization of 6H-SiC by ion Beam Irradiation

1994 ◽  
Vol 339 ◽  
Author(s):  
V. Heera ◽  
R. Kögler ◽  
W. Skorupa ◽  
J. Stoemenos

ABSTRACTThe evolution of the damage in the near surface region of single crystalline 6H-SiC generated by 200 keV Ge+ ion implantation at room temperature (RT) was investigated by Rutherford backscattering spectroscopy/chanelling (RBS/C). The threshold dose for amorphization was found to be about 3 · 1014 cm-2, Amorphous surface layers produced with Ge+ ion doses above the threshold were partly annealed by 300 keV Si+ ion beam induced epitaxial crystallization (IBIEC) at a relatively low temperature of 480°C For comparison, temperatures of at least 1450°C are necessary to recrystallize amorphous SiC layers without assisting ion irradiation. The structure and quality of both the amorphous and recrystallized layers were characterized by cross-section transmission electron microscopy (XTEM). Density changes of SiC due to amorphization were measured by step height measurements.

1988 ◽  
Vol 100 ◽  
Author(s):  
Robert C. Mccune ◽  
W. T. Donlon ◽  
H. K. Plummer ◽  
L. Toth ◽  
F. W. Kunz

ABSTRACTSurface layers with overall thickness <∼300 nm were produced by ion implantation of N+ or N2+ at energies of 50 or 100 keV in 99.99% pure aluminum. These surfaces were characterized by scanning and transmission electron microscopy, Auger electron spectroscopy, Rutherford backscattering, nuclear reaction analysis and particle-induced X-ray analysis. At doses above 2×1017 N2/cm2 , blistering of the surfaces was observed along with a reduction in the extent of the coulometric dose retained by the material. Oxygen is believed to be introduced into the near-surface region by a process of reaction and ion-beam mixing, as well as possible CO contamination of the beam. A phase, isostructural with AlN, forms semi-coherently with parent aluminum grains, however, some fraction of the metallic aluminum phase remains in the reaction layer, even at overall nitrogen contents which exceed the stoichiometry of AlN.


2018 ◽  
Vol 781 ◽  
pp. 70-75
Author(s):  
Sergei Ghyngazov ◽  
Valeria Kostenko ◽  
Sergey Shevelev ◽  
Anatoliy I. Kupchishin ◽  
Aleksey Kondratyuk

The effect of ion irradiation on the strength characteristics of magnesium oxide and ceramics based on zirconia is studied. The MgO samples were a single crystal grown in an artificial manner. Samples of zirconium ceramics were prepared by ceramic technology. Irradiation of MgO crystals was carried out by Si+ ions (E = 150 keV), Fe+ (E = 70 keV), C+ (E = 50 keV) at room temperature. The fluence varied within the range (1016–1017) сm–2. The modification of the investigated types of ceramics was carried out by ions Al+ (Е = 60 keV), Ar+ (Е= 60 keV), N+ (E = 50 keV). We used ion beams of microsecond duration and moderate power (the current density in the pulse was 3 10-3 A/cm2). Fluence was 1017 cm-2. The irradiation of the ceramics with an ion beam C+ (E = 50 keV) was also performed with nanosecond duration (τ = 50 ns). It is established that ionic irradiation of magnesium oxide leads to an increase in crack resistance and a critical stress intensity factor. Irradiation of ceramics leads to hardening of its near-surface layers.


1996 ◽  
Vol 439 ◽  
Author(s):  
S. Müller ◽  
M. L. Jenkins ◽  
C. Abromeit ◽  
H. Wollenberger

AbstractStereo transmission electron microscopy has been used to characterise the distribution in depth of disordered zones and associated dislocation loops in the ordered alloys Ni3Al and Cu3Au after heavy ion irradiation, most extensively for Ni3Al irradiated with 50 keV Ta+ ions at a temperature of 573 K. The Cu3Au specimen was irradiated with 50 keV Ni+ ions at an incident angle of 45° at a temperature of 373 K. In Ni3Al the defect yield, i.e. the probability for a disordered zone to contain a loop was found to be strongly dependent on the depth of the zone in the foil, varying from about 0.7 for near-surface zones to about 0.2 in the bulk. The sizes and shapes of disordered zones were only weakly dependent on depth, except for a small population of zones very near the surface which were strongly elongated parallel to the incident ion beam. In Cu3Au the surface had a smaller but still significant effect on the defect yield. The dependence of the tranverse disordered zone diameter d on ion energy E for Ta+ irradiation of NiA was found to follow a relationship d = k1, E1/α with k, = 2.4 ± 0.4 and α = 3.3 ± 0.4. A similar relationship with the same value of α is valid for a wide variety of incident ion/target combinations found in the literature.


1989 ◽  
Vol 157 ◽  
Author(s):  
M.C. Ridgway ◽  
R.G. Elliman ◽  
J.S. Williams

ABSTRACTIon—beam induced epitaxial crystallization (IBIEC) of amorphous N1Si2 and CoSi2 layers is demonstrated. Epitaxial metal suicide layers on (111) Si substrates were implanted with 40 keV Si ions to form amorphous surface layers. IBIEC of amorphous NiSi2 and CoSi2 layers was induced at 13—74°C with 1.5 MeV Ne ion irradiation and proceeded in a layer—by—layer manner from the original amorphous/crystalline interface with activation energies of 0.26 ± 0.07 and 0.21 ± 0.06 eV for N1Si2 and CoSi2, respectively.


2005 ◽  
Vol 20 (7) ◽  
pp. 1758-1768 ◽  
Author(s):  
M-O. Ruault ◽  
F. Fortuna ◽  
H. Bernas ◽  
J. Chaumont ◽  
O. Kaïtasov ◽  
...  

Crucial features of materials evolution due to ion beam irradiation are often revealed only through studies of process dynamics. We review some significant examples of such experiments performed over the last 25 years with the Orsay in situ facility: a transmission electron microscope setup (with temperature stages operating between 4 and 1000 K) on a medium energy (3–570 keV) ion beam line. New results on nanocavity evolution and metal silicide nanoprecipitates in Si are presented briefly.We show that CoSi2 nanoprecipitate growth is mainly due to the constant Co atom contribution from the ion beam, and CoSi2 platelet growth is the result of a three-dimensional to two-dimensional growth mode transition.


2005 ◽  
Vol 81 (7) ◽  
pp. 1465-1469 ◽  
Author(s):  
J. Olivares ◽  
G. García ◽  
F. Agulló-López ◽  
F. Agulló-Rueda ◽  
A. Kling ◽  
...  

2003 ◽  
Vol 792 ◽  
Author(s):  
W. Jiang ◽  
W. J. Weber ◽  
L. M. Wang ◽  
K. Sun

ABSTRACTGallium nitride single crystals were irradiated using energetic Au2+ ions to two fluences at room temperature. Two different damage levels and depth profiles that are characterized by near-surface damage accumulation and deeper-region damage saturation were produced. Thermal annealing at 873 K resulted in disorder recovery only in the near-surface region at low fluence. However, simultaneous irradiation with 5.4 MeV Si2+ ions during annealing at 873 K induced significant recovery over the entire damage profile at both low and high fluences. Results from high-resolution transmission electron microscopy show recovery of the crystal structure in the highly disordered surface region following the Si2+ ion irradiation. The irradiation-assisted recovery is primarily attributed to defect-stimulated recovery and epitaxial recrystallization processes due to the creation of mobile Frenkel pairs.


Author(s):  
SHEHLA HONEY ◽  
JAMIL ASIM ◽  
KAVIYARASU KASINATHAN ◽  
MAAZA MALIK ◽  
SHAHZAD NASEEM ◽  
...  

Electrical conductivity and optical transmittance of nickel nanowire (Ni-NW) networks are reported in this work. The Ni-NWs were irradiated with 3.5, 3.8 and 4.11[Formula: see text]MeV proton (H[Formula: see text]) ions at room temperature. The electrical conductivity of Ni-NW networks was observed to increase with the increase in beam energies of H[Formula: see text] ions. With the increase in ions beam energies, electrical conductivity increases and this may be attributed to a reduction in the wire–wire point contact resistance due to the irradiation-induced welding of NWs. Welding is probably initiated due to H[Formula: see text] ion-irradiation induced heating effect that also improved the crystalline quality of the NWs. After ion beam irradiation, localized heat is generated in the NWs due to ionization which was also verified by SRIM simulation. Optical transmittance is increased with increase in the energy of H[Formula: see text] ions. The Ni-NW networks subjected to an ion beam irradiation to observe corresponding changes in electrical conductivity and optical transparencies are promising for various nanotechnological applications, such as highly transparent and conducting electrodes.


1984 ◽  
Vol 33 ◽  
Author(s):  
D. J. Sharp ◽  
J. K. G. Panitz ◽  
C. H. Seager

ABSTRACTA combination of chemical etching and sheet resistivity measurements showed that intense (1.4 mA/cm2 ) low energy (1400 eV) ion beam hydrogenation of polycrystalline silicon having a columnar structure can produce electrical defect passivation to depths in the order of 100 μm. Transmission electron micrographs disclose surface and near-surface features resulting from the ion beam bombardment which suggest that one of the hydrogen transport mechanisms may be defect induced.


Sign in / Sign up

Export Citation Format

Share Document