leaching models
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 0)

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 230
Author(s):  
Pengcheng Ma ◽  
Hongying Yang ◽  
Zuochun Luan ◽  
Qifei Sun ◽  
Auwalu Ali ◽  
...  

Bacteria–mineral contact and noncontact leaching models coexist in the bioleaching process. In the present paper, dialysis bags were used to study the bioleaching process by separating the bacteria from the mineral, and the reasons for chalcopyrite surface passivation were discussed. The results show that the copper leaching efficiency of the bacteria–mineral contact model was higher than that of the bacteria–mineral noncontact model. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) were used to discover that the leaching process led to the formation of a sulfur film to inhibit the diffusion of reactive ions. In addition, the deposited jarosite on chalcopyrite surface was crystallized by the hydrolysis of the excess Fe3+ ions. The depositions passivated the chalcopyrite leaching process. The crystallized jarosite in the bacteria EPS layer belonged to bacteria–mineral contact leaching system, while that in the sulfur films belonged to the bacteria–mineral noncontact system.


2020 ◽  
Author(s):  
Matthias Gassmann

<p>Transformation products (TP) of pesticides are found everywhere in the aquatic environment. Their dynamic formation and subsequent transport from agricultural fields to adjacent water bodies can be estimated by using environmental fate models, which is done e.g. in the registration process for plant protection products in the European Union. In this study, an overview of models, transformation simulation concepts and model applications for TP estimation including leaching and catchment scale models is given. The review is restricted to models which were tested against field data in peer-reviewed publications. The models included in this review are GLEAMS, MACRO, RZWQM(2), PEARL, PRZM, Pelmo, LEACHM, HYDRUS 1-D, ZIN-AgriTra and the Field Release Model (FRM).</p><p>Investigating model structures revealed, that six transformation schemes, i.e. possible transformation pathways, are implemented in the models. Only one of the reviewed models, PELMO, uses a completely flexible scheme. In all other models, pathways are restricted. An assessment of model complexity, including hydrological processes and transformation-affecting processes, resulted in PELMO having the highest transformation but the least hydrological complexity among leaching models. RZWQM is the leaching model with the highest hydrological complexity and ranks second in transformation processes. Among the three catchment scale models, ZIN-AgriTra ranks highest in both, hydrological and transformation complexity.</p><p>Even though the number of publications of TP model applications is rather low, the number of leaching models is adequate (eight models). At the catchment scale, however, only two models with proven applications exist in the literature. A spatio-temporal analysis of all models revealed a gap in catchment and regional-scale models with a daily or lower temporal resolution. Thus, well-developed and applied catchment-scale models should be extended by a TP module. This would enable scientists and authorities to estimate TP concentrations or to analyse the environmental fate of TPs at the larger catchment scale. At the same time, the fate processes in models should be updated to reflect the current state of knowledge, especially more flexible transformation schemes and the formation of TPs in different compartments (i.e. plant, soil, water). The integration of pathway prediction models such as the University of Minnesota Pathway Prediction System could enhance the assessment of the large number of pesticide TPs in the aquatic environment.</p>


2020 ◽  
Vol 169 ◽  
pp. 01008
Author(s):  
Aleksandra Belik ◽  
Anna Kokoreva ◽  
Victoria Kolupaeva

The phenomenon of preferential migration of substances can increase the risk of pesticides. In the first year of the experiment, in 7 days after application cyantraniliprole penetrated to a depth of 25 cm in agrosoddy-podzolic soil. In the next year on the 7th day after application the pesticide was detected at a depth of 15 cm. The pesticide migrated deeper than the unconfigured PERL model took into account. The calibration of the PERL model by using experimental data (soil experimental support) allowed to reduce the error of prediction. The obtained data can be used to create new standard soil and climate scenarios for pesticide leaching models.


2015 ◽  
Vol 150 ◽  
pp. 508-515 ◽  
Author(s):  
Dorothea D. Giannouli ◽  
Vassilis Z. Antonopoulos

2014 ◽  
Vol 499 ◽  
pp. 463-480 ◽  
Author(s):  
Piet Groenendijk ◽  
Marius Heinen ◽  
Gernot Klammler ◽  
Johann Fank ◽  
Hans Kupfersberger ◽  
...  

2011 ◽  
Vol 31 (5) ◽  
pp. 965-973 ◽  
Author(s):  
Rômulo P. Scorza Júnior ◽  
João P. da Silva

For an accurate use of pesticide leaching models it is necessary to assess the sensitivity of input parameters. The aim of this work was to carry out sensitivity analysis of the pesticide leaching model PEARL for contrasting soil types of Dourados river watershed in the state of Mato Grosso do Sul, Brazil. Sensitivity analysis was done by carrying out many simulations with different input parameters and calculating their influence on the output values. The approach used was called one-at-a-time sensitivity analysis, which consists in varying independently input parameters one at a time and keeping all others constant with the standard scenario. Sensitivity analysis was automated using SESAN tool that was linked to the PEARL model. Results have shown that only soil characteristics influenced the simulated water flux resulting in none variation of this variable for scenarios with different pesticides and same soil. All input parameters that showed the greatest sensitivity with regard to leached pesticide are related to soil and pesticide properties. Sensitivity of all input parameters was scenario dependent, confirming the need of using more than one standard scenario for sensitivity analysis of pesticide leaching models.


Author(s):  
Rômulo Júnior ◽  
Renê Rigitano ◽  
Jos Boesten

The use of Pesticide Leaching Models (PLM) for risk assessment may be an efficient and attractive way of assessing solutions to some agricultural and environmental problems. Many countries of the European Union and the USA have been using PLM for risk assessment already for a few decades. This chapter has the aim to present a successful application of two PLM (i.e. MACRO and PEARL) in a Brazilian very intensive agricultural area to simulate moisture profiles and the leaching of a water flow tracer (i.e. bromide) and the pesticides cyproconazole and thiamethoxam. Also attempts to summarize the available knowledge about the processes governing pesticide behavior in soil, types and classifications of PLM, the use of PLM for risk assessment at European Union, a theoretical description of PEARL and MACRO models and their testing in a Brazilian agricultural field scenario.


Sign in / Sign up

Export Citation Format

Share Document