The influence of gas composition, cathode material and geometrical parameters on the operation of a thin multiwire chamber working at high amplification

Author(s):  
Krzysztof Genser ◽  
Roman Walczak
2021 ◽  
Vol 11 (11) ◽  
pp. 4963
Author(s):  
Kanghee Jo ◽  
Jooyeon Ha ◽  
Jiseung Ryu ◽  
Eunkyung Lee ◽  
Heesoo Lee

Conductive oxides are widely studied as cathode materials for electrochemical cells, such as solid oxide fuel cells (SOFCs), because of their chemical stability and high electrical conductivity at high temperatures (800–950 °C). The cathode is a key component of SOFCs, accounting for the greatest resistance loss among the SOFC components. It is important to precisely determine the conductivity of the cathode material, but it is difficult to achieve consistency among measurements because of errors caused by differences in the measurement methods and conditions employed by various research teams. In this study, the total electrical conductivity of an SOFC cathode material was measured by the DC 4-point method by investigating the geometrical parameters of the sample and the measurement terminal and the measurement device using La0.8Sr0.2MnO3+d (LSM). The measurement variables included the spacing between the measurement terminals (1 and 2 cm), lead wire diameter (0.25 and 0.5 mm), specimen thickness (3, 4, and 5 mm), and the applied current (10, 50, and 100 mA). The larger the spacing between the measurement terminal and the thinner the specimen, the smaller the standard deviation.


Author(s):  
G.D. Danilatos

Over recent years a new type of electron microscope - the environmental scanning electron microscope (ESEM) - has been developed for the examination of specimen surfaces in the presence of gases. A detailed series of reports on the system has appeared elsewhere. A review summary of the current state and potential of the system is presented here.The gas composition, temperature and pressure can be varied in the specimen chamber of the ESEM. With air, the pressure can be up to one atmosphere (about 1000 mbar). Environments with fully saturated water vapor only at room temperature (20-30 mbar) can be easily maintained whilst liquid water or other solutions, together with uncoated specimens, can be imaged routinely during various applications.


2020 ◽  
pp. 34-42
Author(s):  
Thibault Chastel ◽  
Kevin Botten ◽  
Nathalie Durand ◽  
Nicole Goutal

Seagrass meadows are essential for protection of coastal erosion by damping wave and stabilizing the seabed. Seagrass are considered as a source of water resistance which modifies strongly the wave dynamics. As a part of EDF R & D seagrass restoration project in the Berre lagoon, we quantify the wave attenuation due to artificial vegetation distributed in a flume. Experiments have been conducted at Saint-Venant Hydraulics Laboratory wave flume (Chatou, France). We measure the wave damping with 13 resistive waves gauges along a distance L = 22.5 m for the “low” density and L = 12.15 m for the “high” density of vegetation mimics. A JONSWAP spectrum is used for the generation of irregular waves with significant wave height Hs ranging from 0.10 to 0.23 m and peak period Tp ranging from 1 to 3 s. Artificial vegetation is a model of Posidonia oceanica seagrass species represented by slightly flexible polypropylene shoots with 8 artificial leaves of 0.28 and 0.16 m height. Different hydrodynamics conditions (Hs, Tp, water depth hw) and geometrical parameters (submergence ratio α, shoot density N) have been tested to see their influence on wave attenuation. For a high submergence ratio (typically 0.7), the wave attenuation can reach 67% of the incident wave height whereas for a low submergence ratio (< 0.2) the wave attenuation is negligible. From each experiment, a bulk drag coefficient has been extracted following the energy dissipation model for irregular non-breaking waves developed by Mendez and Losada (2004). This model, based on the assumption that the energy loss over the species meadow is essentially due to the drag force, takes into account both wave and vegetation parameter. Finally, we found an empirical relationship for Cd depending on 2 dimensionless parameters: the Reynolds and Keulegan-Carpenter numbers. These relationships are compared with other similar studies.


Author(s):  
I. G. Shubin ◽  
A. A. Kurkin

During manufacturing nuts of increased height, a problem of obtaining correct cylindrical form of the hole for thread and overall geometrical parameters arises. To solve the problem it is necessary to know regularity of the blank forming process. Results of the study of a technological process of high hexahedral nuts forming presented. The nuts were M18 of 22 mm height, M16 of 19 mm height and M12 of normal height 10 mm according to GOST 5915–70, accuracy class B, steel grade 10 according to GOST 10702–78. The volumetric stamping was accomplished at the five-position automatic presses of АА1822 type. It was determined, that unevenness of the metal flow in the process of plastic deformation of blanks of increased height nuts was caused by different stress conditions by their sections. To simulate the mode of deformation, the program complex QForm-3D was chosen. The complex ensured to forecast with necessary accuracy the metal flow in a blank, as well as to define the deformation force and arising stress in the working instrument. The simulation showed the presence of regularity between preliminary formed buffle and deviation of dimensions and form of a blank wall after its finishing piercing, which can be expressed by a nonlinear dependence. The limit values of the relative height of the buffle С/D = 0.56–0.588 defined, exceeding which will result in rejection of the finished product. Accounting the limit values of the relative height of the buffle will enable to correct a mode of technological operations and technological instruments at stamping of high hexahedral nuts.


2015 ◽  
Vol 53 (7) ◽  
pp. 480-487 ◽  
Author(s):  
Namhyun Kang ◽  
Guo Xian ◽  
Myungjin Lee ◽  
Junghoon Lee

2007 ◽  
Vol 2007 (suppl_26) ◽  
pp. 483-488
Author(s):  
P. S. Whitfield ◽  
I. J. Davidson ◽  
P. W. Stephens ◽  
L. M. D. Cranswick ◽  
I. P. Swainson

2017 ◽  
Vol 13 (2) ◽  
pp. 33-42
Author(s):  
Ye.V. Shapovalov ◽  
◽  
V.O. Koliada ◽  
D.D. Topchev ◽  
N.F. Lutsenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document