Effect of Shield Gas Composition on Cold Cracking Susceptibility of YS 600 MPa Flux Cored Arc Weld Metal

2015 ◽  
Vol 53 (7) ◽  
pp. 480-487 ◽  
Author(s):  
Namhyun Kang ◽  
Guo Xian ◽  
Myungjin Lee ◽  
Junghoon Lee
Author(s):  
W. L. Costin ◽  
I. H. Brown ◽  
L. Green ◽  
R. Ghomashchi

Hydrogen assisted cold cracking (HACC) is a welding defect which may occur in the heat affected zone (HAZ) of the base metal or in the weld metal (WM). Initially the appearance of HACC was associated more closely with the HAZ of the base metal. However, recent developments in advanced steel processing have considerably improved the base material quality, thereby causing a shift of HACC to the WM itself. This represents a very serious problem for industry, because most of the predictive methods are intended for prevention of HACC in the HAZ of the base metal, not in the weld metal [1]. HACC in welded components is affected by three main interrelated factors, i.e. a microstructure, hydrogen concentration and stress level [2–4]. In general, residual stresses resulting from the welding process are unavoidable and their presence significantly influences the susceptibility of weld microstructures to cracking, particularly if hydrogen is introduced during welding [5]. Therefore various weldability tests have been developed over the years which are specifically designed to promote HACC by generating critical stress levels in the weld metal region due to special restraint conditions [4, 6–8]. These tests were used to develop predictive methods based on empirical criteria in order to estimate the cracking susceptibility of both the heat-affected zone and weld metal [4]. However, although the relationship between residual stress, hydrogen and HACC has received considerable attention, the interaction of residual stresses and microstructure in particular at microscopic scales is still not well understood [5, 9–21]. Therefore the current paper focuses on the development and assessment of techniques using Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM) and Electron Backscatter Diffraction for the determination of local residual strains at (sub) micron scales in E8010 weld metal, used for the root pass of X70 pipeline girth welds, and their relationship to the WM microstructure. The measurement of these strains could be used to evaluate the pre-existing stress magnitudes at certain microstructural features [22].


2008 ◽  
Vol 580-582 ◽  
pp. 307-310 ◽  
Author(s):  
D.L. Olson ◽  
Young Do Park ◽  
S. Liu ◽  
J.E. Jackson ◽  
A.N. Lasseigne-Jackson ◽  
...  

Utilizing alternating welding process parameters, deposition practices, and welding consumables, particularly during multiple pass welding, it is possible to improve a variety of weld metal properties. There are available a number of phenomena occurring during welding that allow weld metal designers the ability to generate macro- and micro-structural features amenable to implementation of composite theory. These phenomena include solidification microsegregation during dendrite growth, gas-metal reactions between the selected alternating shielding gas composition and weld pool, and solidification microstructural orientation during welding. Additional methods of producing composite welds including specially designed weld compositions, weld metal solidification modification by arc pulsing, and dual wire deposition may be utilized to achieve single pass and multipass composite weld metal deposition. Composite welds are a potential method to solve challenging demands such as high-toughness at low temperature, creep strength at high temperature, and customized design for corrosion, wear, or cracking resistance.


2018 ◽  
Vol 7 (4.7) ◽  
pp. 401
Author(s):  
Abbas Kamil ALrubaeiy ◽  
. . ◽  
. .

The development of steel alloy which result thin walled, high strength API 5L X75 grade, a restricting parameter controlling widespread use of X75 is the susceptibility to weld metal tracks. The excellent weld ability of this grade of the pipe steel has enhanced the potential for the use of high strength cellulose consumable like E6010 in root pass welding, but the risk of hydrogen assisted cold cracking (HACC) is also increased because of the high strength weld metal. This investigation outlines , the use of grade (E6010) of commercial cellulose consumable to assess conditions leading to hydrogen assisted cold cracking in the diluted weld metal. The research contained clarification of the link among microstructure; preheat temperature and hardness amounts for the weld consumable and its effect on cracking susceptibility. The cracking morphology studies indicated that there are many ways in which the crack can propagate in the weld metal and HAZ region. The mode of cracking observed was microvoide coalescence.    


2017 ◽  
Vol 13 ◽  
pp. 25-31
Author(s):  
Manivelmuralidaran Velumani ◽  
M. Sakthivel ◽  
M. Balaji

In This research article deals with the study of cold cracking susceptibility of High Strength Low Alloy Steel (HSLA) 950A using Gas Metal Arc Welding process (GMAW). The cold cracking is a general problem while welding HSLA steels. It thus becomes mandatory to have a novel method of welding to minimize the effects of cold cracking. The cold cracking tendency of the material is determined using the Y groove Tekken test and the test is carried out with DIN EN ISO 17642–2 standard. The welding of the base metal has been carried out using the low hydrogen electrode ER 70SD2. The test procedure is followed under self-restraint condition for determining cold cracking susceptibility of weld metal. Micro structural constituent of the weld metal plays an important role in determining the cold crack susceptibility of the weld metal. Hence an attempt has been made to impart the microstructure having high resistance to cold cracking.  It has been observed that Acicular ferrite microstructure in the weld metal increases the cold cracking resistance of the welded joint.  In the present study, the effect of preheating temperature on cold crack susceptibility analyzed by varying the preheating temperature 100ºC, 150ºC and acicular ferrite microstructure observed in the microstructure analysis of the welded specimen. The effect of microstructure on cold cracking has also been established. But due to very limited range of temperature, the effect of preheating temperature on cold crack susceptibility was inconclusive. But the formation of acicular ferrite microstructure will have greater influence on cold crack susceptibility. In future, effects of Nickel, Manganese and other alloying elements of the filler material in increasing cold cracking resistance can also be studied for far reaching prospects of the research.


Author(s):  
Nobuyuki Ishikawa ◽  
Hitoshi Sueyoshi ◽  
Shigeru Endo

The critical conditions of hydrogen content and residual stress in the high strength steel weld with the tensile strength level of over 980MPa were investigated. The critical hydrogen concentration for the cold cracking in the Y-grooved constraint weld joint was evaluated with intentionally introducing hydrogen gas. Residual stress conditions at the “root” portion in the weld joint were evaluated by the neutron diffraction technique. It was found that the root portion showed highest tensile stress of over 1110MPa in the transverse direction, and cracking occurred when the average hydrogen content was over 2ppm. In order to clarify the critical conditions of the principal tensile stress and local accumulated hydrogen concentration of the weld metal, the delayed fracture testing by using the notched round bar specimen with electrochemically hydrogen charged was conducted. It was seen that the cold cracking behavior in the Y-grooved weld joint was explained by the critical conditions of the maximum principal stress and the local accumulated hydrogen content obtained from the delayed fracture with the small specimen.


2008 ◽  
Vol 580-582 ◽  
pp. 13-16
Author(s):  
Hee Jin Kim ◽  
Jun Seok Seo ◽  
Jae Hak Kim ◽  
Ka Hee Kim ◽  
Jin Hyun Koh ◽  
...  

Facing the practical difficulties in reducing the diffusible hydrogen content of fluxcontaining welding consumables like flux-cored arc welding (FCAW) wires, the present study investigated the microstructural aspect to improve the hydrogen-induced cold crack (HICC) resistance of multipass weld metal of 600MPa strength. Two FCA welding wires were prepared by controlling the Ni content to give different weld microstructure, but to have similar levels of hardness and diffusible hydrogen content. HICC susceptibility of those two consumables was evaluated by 'G-BOP test' and also by 'multi-pass weld metal cold cracking test'. As a result of this study, it was demonstrated that microstructural modification with decreased proportion of grain boundary ferrite (GF) improved cold crack resistance of weld metal. The detrimental effect of GF against HICC has also been addressed based on the characteristics of weld metal cold cracking.


Sign in / Sign up

Export Citation Format

Share Document