Resolution limits in low voltage scanning electron microscopes using retarding objective lenses

Author(s):  
Joachim Zach
1997 ◽  
Vol 3 (S2) ◽  
pp. 1213-1214
Author(s):  
David C Joy

A majority of the scanning electron microscopes (SEMs) now in use are probably employed as low voltage SEMs (LVSEMs), that is to say they are operated to produce beams with energies below 5keV. This trend away from the more conventional mode of operation at 20 or 30keV has gathered momentum over the past decade and has been driven by both theoretical and practical considera-tions.Firstly, the distance travelled by an electron falls rapidly (in fact as about E1.6 ) as the incident ener-gy E is reduced. Images generated by low energy electron beams therefore contain enhanced surface information compared to those images recorded at higher energies. Since surfaces are of great inter-est in both the life sciences and in materials science this has been a persuasive factor. Secondly, both the secondary and the backscattered electrons now come from essentially the same interaction volume, rather than from volumes which are widely different in size and shape.


Author(s):  
Klaus-Ruediger Peters

A new generation of high performance field emission scanning electron microscopes (FSEM) is now commercially available (JEOL 890, Hitachi S 900, ISI OS 130-F) characterized by an "in lens" position of the specimen where probe diameters are reduced and signal collection improved. Additionally, low voltage operation is extended to 1 kV. Compared to the first generation of FSEM (JE0L JSM 30, Hitachi S 800), which utilized a specimen position below the final lens, specimen size had to be reduced but useful magnification could be impressively increased in both low (1-4 kV) and high (5-40 kV) voltage operation, i.e. from 50,000 to 200,000 and 250,000 to 1,000,000 x respectively.At high accelerating voltage and magnification, contrasts on biological specimens are well characterized1 and are produced by the entering probe electrons in the outmost surface layer within -vl nm depth. Backscattered electrons produce only a background signal. Under these conditions (FIG. 1) image quality is similar to conventional TEM (FIG. 2) and only limited at magnifications >1,000,000 x by probe size (0.5 nm) or non-localization effects (%0.5 nm).


1995 ◽  
Vol 3 (6) ◽  
pp. 8-9
Author(s):  
V.N.E. Robinson

Although the secondary electron (SE) signal is still the most commonly used signal in scanning electron microscopes (SEMs), the backscattered electron (BSE) signal is now in wide use. Imaging both atomic number and surface topography have been the major applications of BSE detectors, with some applications in channelling, magnetic contrast and similar specialized applications. Over the last few years, low voltage BSE imaging has been used for imaging surface features to a depth of a few nm. But the BSE signal contains much more information and new techniques are being developed to take advantage of its versatility.


Author(s):  
S.J. Krause ◽  
G.N. Maracas ◽  
W.J. Varhue ◽  
D.C. Joy

The advent of scanning electron microscopes (SEMs) with reliable, high performance field emission guns (FEG) has afforded many opportunities to obtain new information at low voltages not available at higher voltages in traditional SEMs equipped with tungsten hairpin or LaB6 filaments. The FEG SEMs are able to operate at low voltages with both high brightness and high resolution (HR) due to the small source size and low energy spread of the beam. Resolution of 4 nm down to 1.5 nm are routinely possible in the energy range from 1 to 5 keV along with standard image recording times of 1 to 2 minutes. The low voltage capabilities have allowed insulating materials, such as polymers, composites, and ceramics to be imaged at high resolutions at energies below the second crossover, usually around 1 to 2 keV, without experiencing image artifacts from negative surface charging normally found in uncoated insulators at higher operating voltages.


Author(s):  
Stuart McKeman

Several recent advances have had a major potential impact on the microscopy of ceramic materials. The ability of modern scanning electron microscopes to image uncoated materials, at low voltage for example, whilst still maintaining high resolution should make possible a wide variety of experiments that were hitherto impossible to contemplate. This ability to look at the unmodified surface of a ceramic enables iterative or dynamic experiments to be done with a lot more confidence in the results than has been possible before. A second advance has been the introduction of microscopes capable of operating at higher pressures than was previously possible. This makes possible the ability to image specimens in a variety of different environments. The environmental scanning electron microscope (ESEM) exploits of both of these novel areas. The aim of this review is to highlight areas where the unique capabilities of the ESEM may be applied to advance our understanding of ceramics.


Sign in / Sign up

Export Citation Format

Share Document