Parallel readout of X-ray detectors using delay lines: Space-time-space conversion

Author(s):  
A. Gabriel ◽  
M.H.J. Koch
Keyword(s):  
X Ray ◽  
Geophysics ◽  
1968 ◽  
Vol 33 (1) ◽  
pp. 88-104 ◽  
Author(s):  
Anthony F. Gangi ◽  
David Disher

A space‐time filter has been designed and constructed for use with arrays of transducers on seismic models. The filter allows real time, space‐time operations. Adjustments to change the filter parameters are simply performed. The device can be considered an analog implementation of the techniques used in “digital filtering.” The space‐time operator is capable of handling ten spatial (receiving transducer) inputs, and each input can be filtered with up to 20 feedback and feed‐forward filter points. The time operators are composed of lumped constant, electric delay lines tapped every 0.5 μsec with total delays up to 28 μsec available. The outputs from the delay line taps are summed in an operational amplifier summing circuit. The frequency response of the device is from approximately 10 kHz to 500 kHz, which covers the frequency band normally used in two‐dimensional seismology. Some simple experiments have been performed to demonstrate the utility of the device. These experiments are: a) feedforward time operations, b) feedforward/feedback time operations, c) feedforward space operations, and d) space‐time operations.


2011 ◽  
Vol 20 (02) ◽  
pp. 161-168 ◽  
Author(s):  
MOHAMMAD R. SETARE ◽  
M. DEHGHANI

We investigate the energy–momentum tensor for a massless conformally coupled scalar field in the region between two curved surfaces in k = -1 static Robertson–Walker space–time. We assume that the scalar field satisfies the Robin boundary condition on the surfaces. Robertson–Walker space–time space is conformally related to Rindler space; as a result we can obtain vacuum expectation values of the energy–momentum tensor for a conformally invariant field in Robertson–Walker space–time space from the corresponding Rindler counterpart by the conformal transformation.


2021 ◽  
Author(s):  
Deep Bhattacharjee ◽  
Sanjeevan Singha Roy

Higher dimensions are impossible to visualize as the size of dimension varies inversely proportional to its level. The more the dimension ranges, the least its size. We are a set of points living in a particular point of space and a particular frame of time. i.e, we live in space-time. The space has more dimensions that meets the human eye. We are living in a world of hyper-space. Our world being a smaller dimension is floating in higher dimensions. The quest for the visually of higher dimensions has been a fantasy to mankind but this aspect of nature is completely locked. We can transform dimensions i.e., from higher to lower dimensions, or from lower to higher dimensions, but only through mathematics. The relative notion of mathematics helps us to do the thing, which is perhaps impossible in the experimental part of physical reality. Humans being an element of 3 Dimensions – length, breath, height can only perceive one higher dimensions, that is space-time. but beyond that the notion of dimension itself changes. The dimensions got curled up in every intersection of the coordinates of space in such a way that the higher dimensions remain stable to us. But in reality it is highly unstable. In the higher dimensions, above 4, the space is tearing apart and joining again spontaneously, but the tearing portion itself covered by 2 dimensional Branes which acts as a stabilizer for the unstable dimensions. Dimensions will get smaller and smaller with the space-time interwoven in it. But at Planks length that is 10^-33 meter, the notion of space-time itself breaks down thereby making impossible for the higher dimensions to coexist along with space. Without space, there will be no identity of any dimension. The space itself is the fabric for the milestone of residing higher dimensions. Imagine our room, which is 3 dimensional. But what is there inside the room. The space and of course the time. Space-time being a totally separate entity is not quite separate when compared with other dimensions because it makes the residing place for the higher dimensions or the hyperspace itself. We all are confined within a lower dimensional world within a randomness of higher dimensions. Time being alike like space is an arrow which has the capability of slicing space into different forms. Thereby taking a snapshot of our every nano-second we vibrate within space-time. As each slice of time represents each slice of space, similarly each slice of space represents each slice of time. The nature of space-time is beyond human consciousness. It is the identity by which we breathe, we play, we survive. It is the whole localization of species that encompasses itself with space thereby making space-time a relative quantity depending upon the reference frame. The only thing that can encompass space-time or even change the relative definition of space-time is the speed, the speed far beyond the speed of light. The more the speed, the less the array of time flows. Space-time being an invisible entity makes the other dimensions visible residing in it only into the level of 3, that is l, b, h. After that there is a infamous structure formed by the curling of higher dimensions called CALABI-YAU manifold. This manifold depicts the usual nature of the dimensional quadrants of the higher order by containing a number of small spherical spheres inside it. The mathematics of string theory is still unable to solve the genus and the containing spheres of the manifold which can be the ultimate quest for the hidden dimensions. Hidden, as, the higher dimensions are hidden from human perspective of macro level but if we probe deeper into the fabric of the space-time of General Relativity then we will find the 5th dimension according to the Kaluza-Klein theory. And if we probe even deeper into it at the perspective of string theory we will be amazed to see the real nature of quantum world. They are so marvelously beautiful, they contain so many forms of higher dimensions ranging from 6 to 10. And even many more of that, but we are still not sure about it where they may exist in a ghost state. After all, the quantum nature is far more beautiful that one can even imagine with a full faze of weirdness.


1993 ◽  
Vol 63 (4) ◽  
pp. 406-424 ◽  
Author(s):  
Patrick L. Baker
Keyword(s):  

Author(s):  
M. Xu ◽  
C. X. Cao ◽  
H. F. Guo

Ebola hemorrhagic fever (EHF) is an acute hemorrhagic diseases caused by the Ebola virus, which is highly contagious. This paper aimed to explore the possible gathering area of EHF cases in West Africa in 2014, and identify endemic areas and their tendency by means of time-space analysis. We mapped distribution of EHF incidences and explored statistically significant space, time and space-time disease clusters. We utilized hotspot analysis to find the spatial clustering pattern on the basis of the actual outbreak cases. spatial-temporal cluster analysis is used to analyze the spatial or temporal distribution of agglomeration disease, examine whether its distribution is statistically significant. Local clusters were investigated using Kulldorff’s scan statistic approach. The result reveals that the epidemic mainly gathered in the western part of Africa near north Atlantic with obvious regional distribution. For the current epidemic, we have found areas in high incidence of EVD by means of spatial cluster analysis.


Diogenes ◽  
1983 ◽  
Vol 31 (123) ◽  
pp. 30-48 ◽  
Author(s):  
Milic Capek ◽  
Milic Capek
Keyword(s):  

Noûs ◽  
1978 ◽  
Vol 12 (4) ◽  
pp. 397 ◽  
Author(s):  
Paul Horwich
Keyword(s):  

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yu-Bo Ma ◽  
Li-Chun Zhang ◽  
Jian Liu ◽  
Ren Zhao ◽  
Shuo Cao

In this paper, by analyzing the thermodynamic properties of charged AdS black hole and asymptotically flat space-time charged black hole in the vicinity of the critical point, we establish the correspondence between the thermodynamic parameters of asymptotically flat space-time and nonasymptotically flat space-time, based on the equality of black hole horizon area in the two different types of space-time. The relationship between the cavity radius (which is introduced in the study of asymptotically flat space-time charged black holes) and the cosmological constant (which is introduced in the study of nonasymptotically flat space-time) is determined. The establishment of the correspondence between the thermodynamics parameters in two different types of space-time is beneficial to the mutual promotion of different time-space black hole research, which is helpful to understand the thermodynamics and quantum properties of black hole in space-time.


Sign in / Sign up

Export Citation Format

Share Document