Atmospheric ozone concentration at Athens, Greece. Part I: Surface ozone and its relationship with meteorological parameters

1993 ◽  
Vol 30 (2-3) ◽  
pp. 143-149 ◽  
Author(s):  
C. Varotsos ◽  
M. Varinou ◽  
P. Kalabokas
2008 ◽  
Vol 8 (2) ◽  
pp. 425-430 ◽  
Author(s):  
C. Tzanis ◽  
C. Varotsos ◽  
L. Viras

Abstract. In this study the variations in the surface ozone concentration, the solar ultraviolet radiation and the meteorological parameters at the ground before, during and after the total solar eclipse of 29 March 2006 have been examined. This analysis is based on the measurements performed at four stations located in the greater Athens basin in Greece. The experimental data demonstrated that the solar eclipse phenomenon affects the surface ozone concentration as well as the temperature, the relative humidity and the wind speed near the ground. The decrease in the surface ozone concentration that observed after the beginning of the eclipse event lasted almost two hours, probably due to the decreased efficiency of the photochemical ozone formation. The reduction of the solar ultraviolet radiation at 312 and 365 nm reached 97% and 93% respectively, while the air temperature dropped, the relative humidity increased and the wind speed decreased.


Elem Sci Anth ◽  
2016 ◽  
Vol 4 ◽  
Author(s):  
Peter K. Peterson ◽  
Kerri A. Pratt ◽  
William R. Simpson ◽  
Son V. Nghiem ◽  
Lemuel X. Pérez Pérez ◽  
...  

Abstract Boundary layer atmospheric ozone depletion events (ODEs) are commonly observed across polar sea ice regions following polar sunrise. During March-April 2005 in Alaska, the coastal site of Barrow and inland site of Atqasuk experienced ODEs (O3< 10 nmol mol-1) concurrently for 31% of the observations, consistent with large spatial scale ozone depletion. However, 7% of the time ODEs were exclusively observed inland at Atqasuk. This phenomenon also occurred during one of nine flights during the BRomine, Ozone, and Mercury EXperiment (BROMEX), when atmospheric vertical profiles at both sites showed near-surface ozone depletion only at Atqasuk on 28 March 2012. Concurrent in-flight BrO measurements made using nadir scanning differential optical absorption spectroscopy (DOAS) showed the differences in ozone vertical profiles at these two sites could not be attributed to differences in locally occurring halogen chemistry. During both studies, backward air mass trajectories showed that the Barrow air masses observed had interacted with open sea ice leads, causing increased vertical mixing and recovery of ozone at Barrow and not Atqasuk, where the air masses only interacted with tundra and consolidated sea ice. These observations suggest that, while it is typical for coastal and inland sites to have similar ozone conditions, open leads may cause heterogeneity in the chemical composition of the springtime Arctic boundary layer over coastal and inland areas adjacent to sea ice regions.


2013 ◽  
Vol 224 (7) ◽  
Author(s):  
Håkan Pleijel ◽  
Jenny Klingberg ◽  
Gunilla Pihl Karlsson ◽  
Magnuz Engardt ◽  
Per Erik Karlsson

2010 ◽  
Vol 98 (1) ◽  
pp. 125-139 ◽  
Author(s):  
B. Suresh Kumar Reddy ◽  
K. Raghavendra Kumar ◽  
G. Balakrishnaiah ◽  
K. Rama Gopal ◽  
R.R. Reddy ◽  
...  

1967 ◽  
Vol 20 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Richard Scherhag ◽  
Gunter Warnecke ◽  
Werner Wehry

In 1965, following the Eastbourne Conference, the British, French and German Institutes of Navigation formed a Working Group to make a study of the environment in which the supersonic transport will operate and of its implications for the navigation of such aircraft. The Group's initial task has been one of education, largely through discussion of a series of papers submitted to it. Some of the papers considered have already been published in the Journal (Vol. 19) and a further selection is published below. Table I was contributed by Mr. G. E. Beck. The illustrations to these papers have not all been reproduced.1. Atmospheric Conditions. It will be useful to distinguish between different kinds of atmospheric influences on supersonic aircraft operations. They may be classed as follows:(a) Sporadic effects near the ground(b) Sporadic effects in the free atmosphere(c) Effects on sonic boom(d) Effects of atmospheric ozone(e) Permanently effective atmospheric parameters, such as temperature, density and wind.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Algirdas Augustaitis ◽  
Dalia Jasineviciene ◽  
Rasele Girgzdiene ◽  
Almantas Kliucius ◽  
Vitas Marozas

The present study aimed to detect sensitivity of beech trees (Fagus sylvaticaL.) to meteorological parameters and air pollution by acidifying species as well as to surface ozone outside their north-eastern distribution range. Data set since 1981 of Preila EMEP station enabled to establish that hot Summers, cold dormant, and dry and cold first-half of vegetation periods resulted in beech tree growth reduction. These meteorological parameters explained 57% variation in beech tree ring widths. Acidifying species had no significant effect on beech tree growth. Only ozone was among key factors contributing to beech stand productivity. Phytotoxic effect of this pollutant increased explanation rate of beech tree ring variation by 18%, that is, up to 75%. However, due to climate changes the warmer dormant periods alone are not the basis ensuring favourable conditions for beech tree growth. Increase in air temperature in June-August and decrease in precipitation amount in the first half of vegetation period should result in beech tree radial increment reduction. Despite the fact that phytotoxic effect of surface ozone should not increase due to stabilization in its concentration, it is rather problematic to expect better environmental conditions for beech tree growth at northern latitude of their pervasion.


2013 ◽  
Vol 13 (12) ◽  
pp. 6023-6029 ◽  
Author(s):  
J. A. Seabrook ◽  
J. A. Whiteway ◽  
L. H. Gray ◽  
R. Staebler ◽  
A. Herber

Abstract. A differential absorption lidar (DIAL) for measurement of atmospheric ozone concentration was operated aboard the Polar 5 research aircraft in order to study the depletion of ozone over Arctic sea ice. The lidar measurements during a flight over the sea ice north of Barrow, Alaska, on 3 April 2011 found a surface boundary layer depletion of ozone over a range of 300 km. The photochemical destruction of surface level ozone was strongest at the most northern point of the flight, and steadily decreased towards land. All the observed ozone-depleted air throughout the flight occurred within 300 m of the sea ice surface. A back-trajectory analysis of the air measured throughout the flight indicated that the ozone-depleted air originated from over the ice. Air at the surface that was not depleted in ozone had originated from over land. An investigation into the altitude history of the ozone-depleted air suggests a strong inverse correlation between measured ozone concentration and the amount of time the air directly interacted with the sea ice.


Sign in / Sign up

Export Citation Format

Share Document