Selective reactivation of Epstein-Barr virus-specific cytotoxic T cells by stimulation in vitro with allogeneic virus-transformed HLA-homozygous typing cells

1983 ◽  
Vol 6 (3) ◽  
pp. 151-165 ◽  
Author(s):  
Martin Rowe ◽  
Alan B. Rickinson ◽  
Stephen R. Baer ◽  
M.Anthony Epstein ◽  
Ben A. Bradley
1992 ◽  
Vol 4 (11) ◽  
pp. 1283-1292 ◽  
Author(s):  
M. G. Masucci ◽  
Q.-J. Zhang ◽  
R. Gavioli ◽  
P. O. De Campus–Lime ◽  
R. J. Murray ◽  
...  

2004 ◽  
Vol 78 (4) ◽  
pp. 1665-1674 ◽  
Author(s):  
Takashi Nakayama ◽  
Kunio Hieshima ◽  
Daisuke Nagakubo ◽  
Emiko Sato ◽  
Masahiro Nakayama ◽  
...  

ABSTRACT Chemokines are likely to play important roles in the pathophysiology of diseases associated with Epstein-Barr virus (EBV). Here, we have analyzed the repertoire of chemokines expressed by EBV-infected B cells. EBV infection of B cells induced expression of TARC/CCL17 and MDC/CCL22, which are known to attract Th2 cells and regulatory T cells via CCR4, and also upregulated constitutive expression of MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5, which are known to attract Th1 cells and cytotoxic T cells via CCR5. Accordingly, EBV-immortalized B cells secreted these chemokines, especially CCL3, CCL4, and CCL22, in large quantities. EBV infection or stable expression of LMP1 also induced CCL17 and CCL22 in a B-cell line, BJAB. The inhibitors of the TRAF/NF-κB pathway (BAY11-7082) and the p38/ATF2 pathway (SB202190) selectively suppressed the expression of CCL17 and CCL22 in EBV-immortalized B cells and BJAB-LMP1. Consistently, transient-transfection assays using CCL22 promoter-reporter constructs demonstrated that two NF-κB sites and a single AP-1 site were involved in the activation of the CCL22 promoter by LMP1. Finally, serum CCL22 levels were significantly elevated in infectious mononucleosis. Collectively, LMP1 induces CCL17 and CCL22 in EBV-infected B cells via activation of NF-κB and probably ATF2. Production of CCL17 and CCL22, which attract Th2 and regulatory T cells, may help EBV-infected B cells evade immune surveillance by Th1 cells. However, the concomitant production of CCL3, CCL4, and CCL5 by EBV-infected B cells may eventually attract Th1 cells and cytotoxic T cells, leading to elimination of EBV-infected B cells at latency III and to selection of those with limited expression of latent genes.


1989 ◽  
pp. 376-378
Author(s):  
Dolores J. Schendel ◽  
Erich Lederer ◽  
Gabriele Multhoff ◽  
Elfriede Nößner

Blood ◽  
1998 ◽  
Vol 92 (5) ◽  
pp. 1549-1555 ◽  
Author(s):  
Cliona M. Rooney ◽  
Colton A. Smith ◽  
Catherine Y.C. Ng ◽  
Susan K. Loftin ◽  
John W. Sixbey ◽  
...  

Abstract Epstein-Barr virus (EBV) causes potentially lethal immunoblastic lymphoma in up to 25% of children receiving bone marrow transplants from unrelated or HLA-mismatched donors. Because this complication appears to stem from a deficiency of EBV-specific cytotoxic T cells, we assessed the safety and efficacy of donor-derived polyclonal (CD4+ and CD8+) T-cell lines as immunoprophylaxis and treatment for EBV-related lymphoma. Thirty-nine patients considered to be at high risk for EBV-induced lymphoma each received 2 to 4 intravenous infusions of donor-derived EBV-specific T lymphocytes, after they had received T-cell–depleted bone marrow from HLA-matched unrelated donors (n = 33) or mismatched family members (n = 6). The immunologic effects of this therapy were monitored during and after the infusions. Infused cells were identified by detection of the neo marker gene. EBV-specific T cells bearing theneo marker were identified in all but 1 of the patients. Serial analysis of DNA detected the marker gene for as long as 18 weeks in unmanipulated peripheral blood mononuclear cells and for as long as 38 months in regenerated lines of EBV-specific cytotoxic T cells. Six patients (15.5%) had greatly increased amounts of EBV-DNA on study entry (>2,000 genome copies/106 mononuclear cells), indicating uncontrolled EBV replication, a complication that has had a high correlation with subsequent development of overt lymphoma. All of these patients showed 2 to 4 log decreases in viral DNA levels within 2 to 3 weeks after infusion and none developed lymphoma, confirming the antiviral activity of the donor-derived cells. There were no toxic effects that could be attributed to prophylactic T-cell therapy. Two additional patients who did not receive prophylaxis and developed overt immunoblastic lymphoma responded fully to T-cell infusion. Polyclonal donor-derived T-cell lines specific for EBV proteins can thus be used safely to prevent EBV-related immunoblastic lymphoma after allogeneic marrow transplantation and may also be effective in the treatment of established disease. © 1998 by The American Society of Hematology.


1983 ◽  
Vol 157 (1) ◽  
pp. 173-188 ◽  
Author(s):  
F Hasler ◽  
H G Bluestein ◽  
N J Zvaifler ◽  
L B Epstein

T cells of patients with rheumatoid arthritis (RA) do not control the rate of B lymphoblast transformation induced by Epstein-Barr virus (EBV) as efficiently as T cells from healthy individuals; thus, lymphoblast cell lines are established more readily in RA lymphocytes in vitro after EBV infection. In the present experiments, we have asked whether this T cell regulation can be reproduced by lymphocytes. We found that normal T cells, activated in allogeneic or autologous mixed leukocyte reactions (MLR), produce lymphokines that inhibit in vitro EBV-induced B cell proliferation. Allogeneic MLR supernatants inhibited EBV-induced DNA synthesis 62 +/- 4% (mean +/- SE) at 10 d post-infection, whereas autologous MLR supernatants suppressed it 50 +/- 3%. RA T cell supernatants produced in an allogeneic MLR suppressed as well as normal T cell supernatants (64 +/- 5% inhibition). In contrast, supernatants from RA autologous MLR had little inhibitory activity. EBV-induced DNA synthesis at 10 d was reduced only 8 +/- 3%, compared with the 50 +/- 3% suppressive activity of normal autologous MLR supernatants. The magnitude of the proliferative responses in the autologous MLR regenerating the lymphokines was similar in the normal and RA populations. After depletion of adherent cells from the RA auto-MLR stimulators, supernatant inhibitory activities increased to normal levels (from 11 +/- 6 [SE] to 52 +/- 6% [SE]). The inhibitory factor involved in the regulation of in vitro EBV infection is a protein with a molecular weight of approximately 50,000. Its activity is eliminated by hearing at 56 degrees C and by exposure to acid at pH 2. The inhibitory activity is blocked by mixing the MLR supernatants with a polyvalent antisera or monoclonal antibodies specific for human gamma interferon. Gamma interferon produced by activating T cells in allo- or auto-MLR can reproduce T cell-mediated regulation of EBV-induced B cell proliferation, and the failure of RA auto-MLR to generate that lymphokine parallels the defective T cell regulation of EBV-induced B cell proliferation characteristic of RA lymphoid cells.


Sign in / Sign up

Export Citation Format

Share Document