Fungal deterioration of cellulosic textiles: a review

1991 ◽  
Vol 28 (1-4) ◽  
pp. 209-226 ◽  
Author(s):  
D. Montegut ◽  
N. Indictor ◽  
R.J. Koestler
2021 ◽  
Vol 16 ◽  
pp. 155892502199275
Author(s):  
Ajinkya Powar ◽  
Anne Perwuelz ◽  
Nemeshwaree Behary ◽  
Le vinh Hoang ◽  
Thierry Aussenac ◽  
...  

Color stripping is one of the most convenient ways to rectify the various shade faults occurred during printing or dyeing process of textiles. But, the conventional chemical assisted process poses serious risk of the environmental pollution. Secondly, the chemical recycling of the cellulosic fibers may be disrupted due to the presence of the impurities like colorants, finishes, and the additives in the discarded textiles. So, there is a need to study ways to remove such impurities from the discarded cellulosic textiles in a sustainable manner. This work examines the decolorization of the pigment prints on cellulosic fabrics at pilot scale using an ozone-assisted process. The effect of varying pH, ozone concentration and the treatment time on the decolorization of the pigment prints was optimized using the response surface methodology technique. The effects of ozonation process parameters on the mechanical properties of cellulosic cotton fabric were measured. Decolorization of pigment printed samples was studied with respect to the surface effects by a scanning electron microscopy (SEM), and the chemical removal effects of ozonation treatment were studied using X-ray photoelectron spectroscopy. The possible mechanism regarding the action of ozone for the decolorization is discussed.


1970 ◽  
Vol 48 (9) ◽  
pp. 1541-1551 ◽  
Author(s):  
R. B. Smith ◽  
H. M. Craig ◽  
D. Chu

Fungal deterioration of second-growth Douglas-fir logs, felled each month from August 1961 to May 1962, was studied 2, 4, and 6 years after felling. Decay increased from 10% of log volumes after 2 years to 47% after 6 years. The rate of decay, particularly for the brown cubical type, was greater for autumn- and winter-felled logs than for those felled in the spring and late summer, and closely paralleled the seasonal pattern of ambrosia beetle attack.Decay rates increased with decreasing log size, increasing percentage of sapwood, and increasing height of log above ground. For the same diameter of log, base logs decayed less rapidly than second logs, possibly because of their lower proportion of sapwood in relation to heartwood.Decay expressed as a percentage of total log volume (Y) may be estimated (R2 = 0.71) with the following equation: Y = 13.2 + 10.7X1 − 3.2X2, where X1 = years elapsed and X2 = d.i.b. (diameter inside bark) top of log.Of 30 wood-decay fungi isolated, Naematoloma sp. (N. capnoides or N. fasciculare), which causes a white rot, was associated with the most decay. Fomes pinicola was mainly responsible for brown cubical sap rot, while Poria monticola and P. carbonica caused a brown cubical heart rot at the ends of logs.The significance of variations in deterioration rate and fungal associates is discussed in relation to log durability and salvability.


Chemosphere ◽  
2013 ◽  
Vol 93 (2) ◽  
pp. 408-414 ◽  
Author(s):  
András Sudár ◽  
María J. López ◽  
Gergely Keledi ◽  
M. Carmen Vargas-García ◽  
Francisca Suárez-Estrella ◽  
...  

Materials ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1252 ◽  
Author(s):  
Bryn Crawford ◽  
Sepideh Pakpour ◽  
Negin Kazemian ◽  
John Klironomos ◽  
Karen Stoeffler ◽  
...  

2019 ◽  
Vol 89 (23-24) ◽  
pp. 5067-5075 ◽  
Author(s):  
Helena Wedin ◽  
Marta Lopes ◽  
Herbert Sixta ◽  
Michael Hummel

The aim of this study is to improve the understanding of which end-of-life cellulosic textiles can be used for chemical recycling according to their composition, wear life and laundering—domestic versus service sector. For that purpose, end-of-life textiles were generated through laboratorial laundering of virgin fabrics under domestic and industrial conditions, and the cellulose content and its intrinsic viscosity and molar mass distribution were measured in all samples after two, 10, 20, and 50 laundering cycles. Results presented herein also address the knowledge gap concerning polymer properties of end-of-life man-made cellulosic fabrics—viscose and Lyocell. The results show that post-consumer textiles from the home consumer sector, using domestic laundering, can be assumed to have a similar, or only slightly lower, degree of polymerization than the virgin textiles (−15%). Post-consumer textiles from the service sector, using industrial laundering, can be assumed to have a substantially lower degree of polymerization. An approximate decrease of up to 80% of the original degree of polymerization can be expected when they are worn out. A higher relative decrease for cotton than man-made cellulosic textiles is expected. Furthermore, in these laboratorial laundering trials, no evidence evolved that the cellulose content in blended polyester fabrics would be significantly affected by domestic or industrial laundering. With respect to molar mass distribution, domestic post-consumer cotton waste seems to be the most suitable feedstock for chemical textile recycling using Lyocell-type processes, although a pre-treatment step might be required to remove contaminants and lower the intrinsic viscosity to 400–500 ml/g.


2020 ◽  
Vol 6 (23) ◽  
pp. eaba6574 ◽  
Author(s):  
Cindy Vallieres ◽  
Andrew L. Hook ◽  
Yinfeng He ◽  
Valentina Cuzzucoli Crucitti ◽  
Grazziela Figueredo ◽  
...  

Fungi have major, negative socioeconomic impacts, but control with bioactive agents is increasingly restricted, while resistance is growing. Here, we describe an alternative fungal control strategy via materials operating passively (i.e., no killing effect). We screened hundreds of (meth)acrylate polymers in high throughput, identifying several that reduce attachment of the human pathogen Candida albicans, the crop pathogen Botrytis cinerea, and other fungi. Specific polymer functional groups were associated with weak attachment. Low fungal colonization materials were not toxic, supporting their passive, anti-attachment utility. We developed a candidate monomer formulation for inkjet-based 3D printing. Printed voice prosthesis components showed up to 100% reduction in C. albicans biofilm versus commercial materials. Furthermore, spray-coated leaf surfaces resisted fungal infection, with no plant toxicity. This is the first high-throughput study of polymer chemistries resisting fungal attachment. These materials are ready for incorporation in products to counteract fungal deterioration of goods, food security, and health.


2009 ◽  
Vol 38 (5) ◽  
pp. 540 ◽  
Author(s):  
O. D. Dhingra ◽  
G. N. Jham ◽  
F. A. Rodrigues ◽  
G. J. Silva ◽  
M. L. N. Costa

Sign in / Sign up

Export Citation Format

Share Document