cellulosic textiles
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Chang Liu ◽  
Chang-E Zhou ◽  
Xuehong Ren ◽  
Wenjun Tang ◽  
Changhai Xu ◽  
...  

2021 ◽  
Vol 11 (21) ◽  
pp. 10069
Author(s):  
Eija-Katriina Uusi-Tarkka ◽  
Mikael Skrifvars ◽  
Antti Haapala

Climate change, waste disposal challenges, and emissions generated by the manufacture of non-renewable materials are driving forces behind the production of more sustainable composite materials. All-cellulose composites (ACCs) originate from renewable biomass, such as trees and other plants, and are considered fully biodegradable. Dissolving cellulose is a common part of manufacturing ACCs, and currently there is a lot of research focused on effective, but also more environmentally friendly cellulose solvents. There are several beneficial properties of ACC materials that make them competitive: light weight, recyclability, low toxicity, good optical, mechanical, and gas barrier properties, and abundance of renewable plant-based raw material. The most prominent ACC applications are currently found in the food packing, medical, technical and vehicle industries. All-cellulose nanocomposites (ACNCs) expand the current research field and can offer a variety of more specific and functional applications. This review provides an overview of the manufacture of sustainable ACCs from lignocellulose, purified cellulose, and cellulosic textiles. There is an introduction of the cellulose dissolution practices of creating ACCs that are currently researched, the structure of cellulose during complete or partial dissolution is discussed, and a brief overview of factors which influence composite properties is presented.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 179
Author(s):  
Riadh Zouari ◽  
Sondes Gargoubi

Among the various advanced materials, flame-retardant cellulosic textiles are important as they directly relate to human health and hazards. The use of environmentally friendly flame-retardant coatings is currently one of the major concerns in the textile coating industry. In this work, acrylic acid was grafted onto the surface of cotton using plasma technology to enhance the attachment of acrylate phosphate monomer. Surface analyses, such as scanning electron microscopy (SEM), energy dispersive x-ray (EDX) and attenuated total reflectance Fourier-transform infrared (ATR-FTIR), were carried out to characterize the coating. Textile properties such as wettability and mechanical properties of untreated and treated cotton samples were investigated. A laundering test was also performed to predict the durability of the finishing. The outcomes revealed that acrylic acid-grafted samples treated with acrylate phosphate monomer have good flame-retardant properties.


2021 ◽  
Vol 16 ◽  
pp. 155892502199275
Author(s):  
Ajinkya Powar ◽  
Anne Perwuelz ◽  
Nemeshwaree Behary ◽  
Le vinh Hoang ◽  
Thierry Aussenac ◽  
...  

Color stripping is one of the most convenient ways to rectify the various shade faults occurred during printing or dyeing process of textiles. But, the conventional chemical assisted process poses serious risk of the environmental pollution. Secondly, the chemical recycling of the cellulosic fibers may be disrupted due to the presence of the impurities like colorants, finishes, and the additives in the discarded textiles. So, there is a need to study ways to remove such impurities from the discarded cellulosic textiles in a sustainable manner. This work examines the decolorization of the pigment prints on cellulosic fabrics at pilot scale using an ozone-assisted process. The effect of varying pH, ozone concentration and the treatment time on the decolorization of the pigment prints was optimized using the response surface methodology technique. The effects of ozonation process parameters on the mechanical properties of cellulosic cotton fabric were measured. Decolorization of pigment printed samples was studied with respect to the surface effects by a scanning electron microscopy (SEM), and the chemical removal effects of ozonation treatment were studied using X-ray photoelectron spectroscopy. The possible mechanism regarding the action of ozone for the decolorization is discussed.


2020 ◽  
Vol 8 (51) ◽  
pp. 18879-18888
Author(s):  
Joanna Kwiczak-Yiǧitbaşı ◽  
Mine Demir ◽  
Recep Erdem Ahan ◽  
Sedat Canlı ◽  
Urartu Özgür Şafak Şeker ◽  
...  

2020 ◽  
Vol 117 (33) ◽  
pp. 19670-19676
Author(s):  
Corentin Reynaud ◽  
Mathieu Thoury ◽  
Alexandre Dazzi ◽  
Gaël Latour ◽  
Mario Scheel ◽  
...  

The understanding of fossilization mechanisms at the nanoscale remains extremely challenging despite its fundamental interest and its implications for paleontology, archaeology, geoscience, and environmental and material sciences. The mineralization mechanism by which cellulosic, keratinous, and silk tissues fossilize in the vicinity of archaeological metal artifacts offers the most exquisite preservation through a mechanism unexplored on the nanoscale. It is at the center of the vast majority of ancient textiles preserved under nonextreme conditions, known through extremely valuable fragments. Here we show the reconstruction of the nanoscale mechanism leading to the preservation of an exceptional collection of ancient cellulosic textiles recovered in the ancient Near East (4,000 to 5,000 years ago). We demonstrate that even the most mineralized fibers, which contain inorganic compounds throughout their histology, enclose preserved cellulosic remains in place. We evidence a process that combines the three steps of water transport of biocidal metal cations and soil solutes, degradation and loss of crystallinity of cellulosic polysaccharides, and silicification.


2020 ◽  
Vol 10 (3) ◽  
pp. 946 ◽  
Author(s):  
Sohail Yasin ◽  
Massimo Curti ◽  
Giorgio Rovero ◽  
Munir Hussain ◽  
Danmei Sun

Renewable energy from thermal valorization plays a key part in today’s energy from natural cellulosic textiles that are resourceful biomass and safe from toxicity at high temperature treatments. The situation is opposite, when technical textiles are treated with synthetic chemical finishes adding functionality as anti-bacterial, water repellent or flame retardant, etc. Incineration of flame retardant textile results in possible unfavorable gases, toxic fumes and contaminated ash. Other thermal valorization techniques like gasification would assist in avoiding the formation of additional toxic hazards. Herein, gasification of flame retardant textile is carried out the likelihood to get quality gas composition. For comparative analysis, flame retardant textiles, after their flame retardant ability being revoked, are also gasified. The output gas components suggested that gasification can be a useful thermal valorization approach for flame retardant textiles and relevantly improved gas composition was seen in textiles with their flame retardant substrate/species being removed.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 259 ◽  
Author(s):  
Jinli Ma ◽  
Xiao Wang ◽  
Jing Li ◽  
Ru Chen ◽  
Ju Wei

A new approach for flame retardant functional finishing of textiles was explored to improve flame retardancy of cotton fabrics by simple physical adhesion method. Mg(OH)2 was adhered to cotton fiber with the aid of fiber swelling in ionic liquid on heating and shrinkage on washing to obtain flame retardancy. The effects of immobilizing condition and methods on flame retardancy were discussed. The surface morphology, crystal structure, combustion behavior, thermal and physical properties of cotton fabric adhered with Mg(OH)2 were analyzed. The afterflame time and afterglow time of adhered cotton fabric were significantly reduced to less than 5 s. The thermal weight loss of cotton fabric was increased by 11.7% and the total heat released per unit mass was decreased by 20.9% after MH adhesion. The simple eco-friendly adhesion method provided a convenient approach for the development and application of flame retardant functional cellulosic textiles.


2019 ◽  
Vol 89 (23-24) ◽  
pp. 5067-5075 ◽  
Author(s):  
Helena Wedin ◽  
Marta Lopes ◽  
Herbert Sixta ◽  
Michael Hummel

The aim of this study is to improve the understanding of which end-of-life cellulosic textiles can be used for chemical recycling according to their composition, wear life and laundering—domestic versus service sector. For that purpose, end-of-life textiles were generated through laboratorial laundering of virgin fabrics under domestic and industrial conditions, and the cellulose content and its intrinsic viscosity and molar mass distribution were measured in all samples after two, 10, 20, and 50 laundering cycles. Results presented herein also address the knowledge gap concerning polymer properties of end-of-life man-made cellulosic fabrics—viscose and Lyocell. The results show that post-consumer textiles from the home consumer sector, using domestic laundering, can be assumed to have a similar, or only slightly lower, degree of polymerization than the virgin textiles (−15%). Post-consumer textiles from the service sector, using industrial laundering, can be assumed to have a substantially lower degree of polymerization. An approximate decrease of up to 80% of the original degree of polymerization can be expected when they are worn out. A higher relative decrease for cotton than man-made cellulosic textiles is expected. Furthermore, in these laboratorial laundering trials, no evidence evolved that the cellulose content in blended polyester fabrics would be significantly affected by domestic or industrial laundering. With respect to molar mass distribution, domestic post-consumer cotton waste seems to be the most suitable feedstock for chemical textile recycling using Lyocell-type processes, although a pre-treatment step might be required to remove contaminants and lower the intrinsic viscosity to 400–500 ml/g.


Sign in / Sign up

Export Citation Format

Share Document