Retardation of fungal deterioration of stored soybeans by fumigation with mustard essential oil

2009 ◽  
Vol 38 (5) ◽  
pp. 540 ◽  
Author(s):  
O. D. Dhingra ◽  
G. N. Jham ◽  
F. A. Rodrigues ◽  
G. J. Silva ◽  
M. L. N. Costa
2016 ◽  
Vol 79 (2) ◽  
pp. 309-315 ◽  
Author(s):  
FATIMA REYES-JURADO ◽  
AURELIO LÓPEZ-MALO ◽  
ENRIQUE PALOU

ABSTRACTThe antimicrobial activities of essential oils from Mexican oregano (Lippia berlandieri Schauer), mustard (Brassica nigra), and thyme (Thymus vulgaris) were evaluated alone and in binary combinations against Listeria monocytogenes, Staphylococcus aureus, or Salmonella Enteritidis. Chemical compositions of the essential oils were analyzed by gas chromatography–mass spectrometry. The MICs of the evaluated essential oils ranged from 0.05 to 0.50% (vol/vol). Mustard essential oil was the most effective, likely due to the presence of allyl isothiocyanate, identified as its major component. Furthermore, mustard essential oil exhibited synergistic effects when combined with either Mexican oregano or thyme essential oils (fractional inhibitory concentration indices of 0.75); an additive effect was obtained by combining thyme and Mexican oregano essential oils (fractional inhibitory concentration index = 1.00). These results suggest the potential of studied essential oil mixtures to inhibit microbial growth and preserve foods; however, their effect on sensory quality in selected foods compatible with their flavor needs to be assessed.


2019 ◽  
Vol 82 (12) ◽  
pp. 2038-2043 ◽  
Author(s):  
JOHN ADAM PORTER ◽  
EMEFA ANGELICA MONU

ABSTRACT It is estimated that nontyphoidal Salmonella causes approximately 1 million illnesses and 378 deaths per year in the United States. Reduction of Salmonella-related foodborne infections can be achieved through application of food antimicrobials. Essential oils in combination with other antimicrobials can be added to food products to reduce the levels of the organism below the infectious dose for healthy individuals. The purpose of this study was to investigate the antimicrobial efficacy of white mustard essential oil (WMEO) against serovars of Salmonella and its potential to be used with carvacrol or thymol to control Salmonella. Results showed that WMEO at the highest concentration of 0.84% (v/v) compared with the positive control had approximately a 6- to 7-log reduction for all serovars. It was found that no difference in susceptibility existed among the serovars tested (P > 0.05). In addition, the MICs were determined to be 0.5, 0.02, and 0.02% for WMEO, carvacrol, and thymol, respectively, against Salmonella Typhimurium. The fractional inhibitory concentration index was calculated. A score of 1 indicated an additive effect occurred when WMEO was combined with thymol or carvacrol. Combining WMEO with carvacrol or thymol indicated that the concentration of individual essential oils needed to inhibit Salmonella can be reduced using these combinations and warrants further study to determine potential use in controlling Salmonella in commercial food products. HIGHLIGHTS


2019 ◽  
Vol 155 (2) ◽  
pp. 435-444
Author(s):  
Nadson de Carvalho Pontes ◽  
Jaqueline Kiyomi Yamada ◽  
Miriam Fumiko Fujinawa ◽  
Onkar Dev Dhingra ◽  
José Rogério de Oliveira

2019 ◽  
Vol 136 ◽  
pp. 06006
Author(s):  
Qiyu Lu ◽  
Ji Liu ◽  
Caihong Tu ◽  
Juan Li ◽  
Chunlong Lei ◽  
...  

To determine the antibacterial effect of 34 plant essential oils on Alternaria alternata, 34 plant essential oils such as asarum essential oil, garlic essential oil, and mustard essential oil are used as inhibition agents to isolate A. alternata from citrus as indicator bacteria, through the bacteriostasis test and drug susceptibility test, the types of essential oils with the best inhibitory effect were screened and their concentration was determined. The results showed that the best inhibition effect was mustard essential oil with a minimum inhibitory concentration of 250 μl/L and a minimum bactericidal concentration of 250 μl/L. Followed by the Litsea cubeba essential oil and basil oil, the minimum inhibitory concentration is 500 μl/L.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Ana Elena Aguilar-González ◽  
Enrique Palou ◽  
Aurelio López-Malo

The inhibitory effect of mustard essential oil (EO) in vapor phase against Aspergillus niger was evaluated in vitro and in vivo (in tomatoes). Mold response in tomatoes exposed for short or long periods to selected concentrations of mustard EO was also evaluated. Furthermore, a sensory evaluation was also performed among treated tomatoes and compared with nontreated ones. Minimum inhibitory concentration (MIC) for the studied EO was determined by the inverted Petri dish method. MIC for the in vitro and in vivo tests for mustard EO was of 3.08 μL/Lair. In vitro and in vivo results demonstrate the effectiveness of vapors of mustard EO against A. niger. The studied EO contains highly volatile organic compounds with strong inhibitory effects, even when applied for short periods, and can consequently be considered a good alternative to traditional synthetic antimicrobials without detriment of selected sensory attributes.


2013 ◽  
Vol 76 (4) ◽  
pp. 580-587 ◽  
Author(s):  
JAIRUS R. D. DAVID ◽  
ATHULA EKANAYAKE ◽  
INDARPAL SINGH ◽  
BRIAN FARINA ◽  
MICHAEL MEYER

White mustard essential oil (WMEO), from white mustard seed (Sinapis alba L.), is obtained by solvent extraction of defatted and wetted ground mustard; endogenous myrosinase catalyzes the hydrolysis of the glucosinolate sinalbin to yield 4-hydroxybenzyl isothiocyanate (4-HBITC), the antimicrobial component of WMEO. Sauce with particulates was made by mixing sauce, which served as the carrier for WMEO, with frozen vegetable and chicken particulates inoculated with Salmonella sp. WMEO (at 250 to 750 ppm of 4-HBITC) was able to reduce inoculated Salmonella counts by 0.8 to 2.7 log (CFU/g) in a frozen sauce with particulates in a dose-dependent manner, starting from the point of formulating the sauce through the microwave cooking step. High-pressure liquid chromatography–based analytical data confirmed that 4-HBITC was present in all of the samples in the expected concentrations and was completely hydrolyzed after the recommended cooking time in microwave ovens. In another experiment simulating unintentional abuse conditions, where the WMEO containing sauce with particulates was kept at room temperature for 5 h, WMEO (at 250 to 750 ppm of 4-HBITC) was able to reduce inoculated Salmonella counts from the point of first contact and up to 5 h by 0.7 to 2.4 log (CFU/g). Despite the known hydrolytic instability of the active component 4-HBITC, particularly at close to neutral pH values, WMEO was effective in controlling deliberately inoculated Salmonella sp. in a frozen sauce with particulates.


Sign in / Sign up

Export Citation Format

Share Document