Influence of proprioceptive information on space orientation on the ground and in orbital weightlessness

1989 ◽  
Vol 9 (11) ◽  
pp. 223-230 ◽  
Author(s):  
R. von Baumgarten ◽  
J. Kass ◽  
H. Vogel ◽  
J. Wetzig
2021 ◽  
Vol 11 (4) ◽  
pp. 518
Author(s):  
Sara De Angelis ◽  
Alessandro Antonio Princi ◽  
Fulvio Dal Farra ◽  
Giovanni Morone ◽  
Carlo Caltagirone ◽  
...  

Postural instability and fear of falling represent two major causes of decreased mobility and quality of life in cerebrovascular and neurologic diseases. In recent years, rehabilitation strategies were carried out considering a combined sensorimotor intervention and an active involvement of the patients during the rehabilitation sessions. Accordingly, new technological devices and paradigms have been developed to increase the effectiveness of rehabilitation by integrating multisensory information and augmented feedback promoting the involvement of the cognitive paradigm in neurorehabilitation. In this context, the vibrotactile feedback (VF) could represent a peripheral therapeutic input, in order to provide spatial proprioceptive information to guide the patient during task-oriented exercises. The present systematic review and metanalysis aimed to explore the effectiveness of the VF on balance and gait rehabilitation in patients with neurological and cerebrovascular diseases. A total of 18 studies met the inclusion criteria and were included. Due to the lack of high-quality studies and heterogeneity of treatments protocols, clinical practice recommendations on the efficacy of VF cannot be made. Results show that VF-based intervention could be a safe complementary sensory-motor approach for balance and gait rehabilitation in patients with neurological and cerebrovascular diseases. More high-quality randomized controlled trials are needed.


NeuroImage ◽  
2007 ◽  
Vol 36 ◽  
pp. T61-T68 ◽  
Author(s):  
A. Blangero ◽  
H. Ota ◽  
L. Delporte ◽  
P. Revol ◽  
P. Vindras ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Biggio ◽  
A. Bisio ◽  
F. Garbarini ◽  
Marco Bove

AbstractCircle-line drawing paradigm is used to study bimanual coupling. In the standard paradigm, subjects are asked to draw circles with one hand and lines with the other hand; the influence of the concomitant tasks results in two “elliptical” figures. Here we tested whether proprioceptive information evoked by muscle vibration inducing a proprioceptive illusion (PI) of movement at central level, was able to affect the contralateral hand drawing circles or lines. A multisite 80 Hz-muscle vibration paradigm was used to induce the illusion of circle- and line-drawing on the right hand of 15 healthy participants. During muscle vibration, subjects had to draw a congruent or an incongruent figure with the left hand. The ovalization induced by PI was compared with Real and Motor Imagery conditions, which already have proved to induce bimanual coupling. We showed that the ovalization of a perceived circle over a line drawing during PI was comparable to that observed in Real and Motor Imagery condition. This finding indicates that PI can induce bimanual coupling, and proprioceptive information can influence the motor programs of the contralateral hand.


1999 ◽  
Vol 9 (2) ◽  
pp. 103-109
Author(s):  
Reginald L. Reginella ◽  
Mark S. Redfern ◽  
Joseph M. Furman

Sensory information from lightly touching a reference with the hand is known to influence postural sway in young adults. The primary aim of this study was to compare the influence of finger contact (FC) with an earth-fixed reference to the influence of FC with a body-fixed reference. A second goal of this study was to determine if FC is used differently by older adults compared to younger adults. Using a force plate, center of pressure at the feet was recorded from blindfolded young and older subjects during several conditions. Subjects either did or did not lightly touch a force-sensitive plate that was either earth-fixed or moved forward and backward in synchrony with body sway (that is, sway-referenced). In addition, support surface conditions were also varied, including a fixed floor and a sway-referenced floor using an EquitestTM. Results showed that the type of FC, floor condition, and age each had an effect on postural sway. Touching an earth-fixed plate decreased postural sway as compared to no touching, while touching a sway-referenced plate incresased sway. This influence of FC was enhanced when the floor was sway-referenced. Although older subjects swayed more than young subjects overall, no age-FC interactions occurred, indicating that FC was not utilized differently between the age groups. This study suggests that FC cannot be disregarded as erroneous, especially when proprioceptive information from the legs is distorted. Further, FC is integrated with other sensory information by the postural control system similarly in young and older persons.


Author(s):  
Koenraad Vandevoorde ◽  
Jean-Jacques Orban de Xivry

The ability to adjust movements to changes in the environment declines with aging. This age-related decline is caused by the decline of explicit adjustments. However, implicit adaptation remains intact and might even be increased with aging. Since proprioceptive information has been linked to implicit adaptation, it might well be that an age-related decline in proprioceptive acuity might be linked to the performance of older adults in implicit adaptation tasks. Indeed, age-related proprioceptive deficits could lead to altered sensory integration with an increased weighting of the visual sensory-prediction error. Another possibility is that reduced proprioceptive acuity results in an increased reliance on predicted sensory consequences of the movement. Both these explanations led to our preregistered hypothesis: we expected a relation between the decline of proprioception and the amount of implicit adaptation across ages. However, we failed to support this hypothesis. Our results question the existence of reliability-based integration of visual and proprioceptive signals during motor adaptation.


1999 ◽  
Vol 9 (6) ◽  
pp. 435-444
Author(s):  
Rosemary A. Speers ◽  
Neil T. Shepard ◽  
Arthur D. Kuo

The Sensory Organization Test protocol of the EquiTest system (NeuroCom International, Clackamas Oregon) tests utilization of visual, vestibular, and proprioceptive sensors by manipulating the accuracy of visual and/or somatosensory inputs during quiet stance. In the standard Sensory Organization Test, both manipulation of sensory input (sway-referencing) and assessment of postural sway are based on ground reaction forces measured from a forceplate. The purpose of our investigation was to examine the use of kinematic measurements to provide a more direct feedback signal for sway-referencing and for assessment of sway. We compared three methods of sway-referencing: the standard EquiTest method based on ground reaction torque, kinematic feedback based on servo-controlling to shank motion, and a more complex kinematic feedback based on servo-controlling to follow position of the center of mass (COM) as calculated from a two-link biomechanical model. Fifty-one normal subjects (ages 20–79) performed the randomized protocol. When using either shank or COM angle for sway-referencing feedback as compared to the standard EquiTest protocol, the Equilibrium Quotient and Strategy Score assessments were decreased for all age groups in the platform sway-referenced conditions (SOT 4, 5, 6). For all groups of subjects, there were significant differences in one or more of the kinematic sway measures of shank, hip, or COM angle when using either of the alternative sway-referencing parameters as compared to the standard EquiTest protocol. The increased sensitivities arising from use of kinematics had the effect of amplifying differences with age. For sway-referencing, the direct kinematic feedback may enhance ability to reduce proprioceptive information by servo-controlling more closely to actual ankle motion. For assessment, kinematics measurements can potentially increase sensitivity for detection of balance disorders, because it may be possible to discriminate between body sway and acceleration and to determine the phase relationship between ankle and hip motion.


2003 ◽  
Vol 94 (1) ◽  
pp. 220-226 ◽  
Author(s):  
Weirong Zhang ◽  
Paul W. Davenport

It has been demonstrated that phrenic nerve afferents project to somatosensory cortex, yet the sensory pathways are still poorly understood. This study investigated the neural responses in the thalamic ventroposteriolateral (VPL) nucleus after phrenic afferent stimulation in cats and rats. Activation of VPL neurons was observed after electrical stimulation of the contralateral phrenic nerve. Direct mechanical stimulation of the diaphragm also elicited increased activity in the same VPL neurons that were activated by electrical stimulation of the phrenic nerve. Some VPL neurons responded to both phrenic afferent stimulation and shoulder probing. In rats, VPL neurons activated by inspiratory occlusion also responded to stimulation on phrenic afferents. These results demonstrate that phrenic afferents can reach the VPL thalamus under physiological conditions and support the hypothesis that the thalamic VPL nucleus functions as a relay for the conduction of proprioceptive information from the diaphragm to the contralateral somatosensory cortex.


1992 ◽  
Vol 36 (10) ◽  
pp. 765-769
Author(s):  
Lisa Fletcher ◽  
Hee-Seok Park ◽  
Bernard J Martin

The present work was aimed at defining the contribution of vibration-induced perturbation of hand proprioceptive/exteroceptive feedback on standing equilibrium. A vibrating handle, free in space or fixed to a stationary support, was held in the dominant hand while maintaining an erect posture on a force platform, eyes closed. Four arm positions were used. The results show that body sways increase significantly during hand vibration exposure when the handle is fixed. Significant shifts of the center of pressure COP are elicited in every situations. Furthermore, the shifts of the COP are clearly oriented in the direction of the handle when this latter is fixed. It is suggested that the proprioceptive information issued from the hand contributes to the elaboration of a spatial reference and to the control of posture as a function of the environmental context. These results indicate that hand vibration exposure can be considered as a risk factor which may contribute to fall accidents.


Sign in / Sign up

Export Citation Format

Share Document