Effects of Hand Vibration on Postural Stability

1992 ◽  
Vol 36 (10) ◽  
pp. 765-769
Author(s):  
Lisa Fletcher ◽  
Hee-Seok Park ◽  
Bernard J Martin

The present work was aimed at defining the contribution of vibration-induced perturbation of hand proprioceptive/exteroceptive feedback on standing equilibrium. A vibrating handle, free in space or fixed to a stationary support, was held in the dominant hand while maintaining an erect posture on a force platform, eyes closed. Four arm positions were used. The results show that body sways increase significantly during hand vibration exposure when the handle is fixed. Significant shifts of the center of pressure COP are elicited in every situations. Furthermore, the shifts of the COP are clearly oriented in the direction of the handle when this latter is fixed. It is suggested that the proprioceptive information issued from the hand contributes to the elaboration of a spatial reference and to the control of posture as a function of the environmental context. These results indicate that hand vibration exposure can be considered as a risk factor which may contribute to fall accidents.

Sports ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 89
Author(s):  
Albina Andreeva ◽  
Andrey Melnikov ◽  
Dmitry Skvortsov ◽  
Kadriya Akhmerova ◽  
Alexander Vavaev ◽  
...  

The effects of different factors—such as age, sex, performance level, and athletic shoe features—on postural balance in athletes remain unclear. The main objective of our study is to identify the features of postural stability in athletes of different age, sex, performance level, and using different types of athletic shoes. This study assessed postural stability in athletes (n = 936, 6–47 years) in a normal bipedal stance with eyes open (EO) and eyes closed (EC). Postural stability was evaluated based on the center of pressure (COP), sway area (AS), and velocity (VCP) while standing on a stabiloplatform. Children (6–12 years) and teen athletes (13–17 years) showed reduced AS-EO (p < 0.01) and VCP-EO (p < 0.01) compared to control (n = 225, 7–30 years). In male and female athletes aged 18+, only VCP-EC was lower versus control. In females (13–17 and 18+), VCP-EO and EC were lower than in males (p < 0.05). Only in the Shooting group, the athletes’ performance levels had an effect on VCP-EO (p = 0.020). Long use of rigid athletic shoes with stiff ankle support was associated with reduced posture stability. Postural stability in athletes was mostly influenced by the athlete‘s age, and, to a lesser extent, by their sex, performance level, and athlete shoe features.


Obesity Facts ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 499-513
Author(s):  
Gabriel M. Pagnotti ◽  
Amna Haider ◽  
Ariel Yang ◽  
Kathryn E. Cottell ◽  
Catherine M. Tuppo ◽  
...  

<b><i>Introduction:</i></b> Globally, 300 million adults have clinical obesity. Heightened adiposity and inadequate musculature secondary to obesity alter bipedal stance and gait, diminish musculoskeletal tissue quality, and compromise neuromuscular feedback; these physiological changes alter stability and increase injury risk from falls. Studies in the field focus on obese patients across a broad range of body mass indices (BMI &#x3e;30 kg/m<sup>2</sup>) but without isolating the most morbidly obese subset (BMI ≥40 kg/m<sup>2</sup>). We investigated the impact of obesity in perturbing postural stability in morbidly obese subjects elected for bariatric intervention, harboring a higher-spectrum BMI. <b><i>Subjects and Methods:</i></b> Traditional force plate measurements and stabilograms are gold standards employed when measuring center of pressure (COP) and postural sway. To quantify the extent of postural instability in subjects with obesity before bariatric surgery, we assessed 17 obese subjects with an average BMI of 40 kg/m<sup>2</sup> in contrast to 13 nonobese subjects with an average BMI of 30 kg/m<sup>2</sup>. COP and postural sway were measured from static and dynamic tasks. Involuntary movements were measured when patients performed static stances, with eyes either opened or closed. Two additional voluntary movements were measured when subjects performed dynamic, upper torso tasks with eyes opened. <b><i>Results:</i></b> Mean body weight was 85% (<i>p</i> &#x3c; 0.001) greater in obese than nonobese subjects. Following static balance assessments, we observed greater sway displacement in the anteroposterior (AP) direction in obese subjects with eyes open (87%, <i>p</i> &#x3c; 0.002) and eyes closed (76%, <i>p</i> = 0.04) versus nonobese subjects. Obese subjects also exhibited a higher COP velocity in static tests when subjects’ eyes were open (47%, <i>p</i> = 0.04). Dynamic tests demonstrated no differences between groups in sway displacement in either direction; however, COP velocity in the mediolateral (ML) direction was reduced (31%, <i>p</i> &#x3c; 0.02) in obese subjects while voluntarily swaying in the AP direction, but increased in the same cohort when swaying in the ML direction (40%, <i>p</i> &#x3c; 0.04). <b><i>Discussion and Conclusion:</i></b> Importantly, these data highlight obesity’s contribution towards increased postural instability. Obese subjects exhibited greater COP displacement at higher AP velocities versus nonobese subjects, suggesting that clinically obese individuals show greater instability than nonobese subjects. Identifying factors contributory to instability could encourage patient-specific physical therapies and presurgical measures to mitigate instability and monitor postsurgical balance improvements.


2019 ◽  
Vol 40 (13) ◽  
pp. 871-875
Author(s):  
Laura H. Charalambous ◽  
Rachael B. Champion ◽  
Lindsey R. Smith ◽  
Andrew C. S. Mitchell ◽  
Daniel P. Bailey

AbstractHigh amounts of sitting increase the risk of non-communicable disease and mortality. Treadmill desks make it possible to reduce sitting during the desk-based workerʼs day. This study investigated the acute effect on postural stability of interrupting prolonged sitting with an accumulated 2-h of light-intensity treadmill desk walking. Twenty-one sedentary adults participated in this randomized acute crossover trial, with two 6.5 h conditions: 1) uninterrupted sitting and 2) interrupted sitting with accumulated 2 h light-intensity treadmill desk walking. Pre- and post-condition, participants performed four postural stability tests on a pressure plate (bipedal and unipedal standing stance, eyes open and eyes closed). Anteroposterior center of pressure amplitude showed a significant condition x time interaction in bipedal eyes closed (F(1,20)=4.62, p=0.046) and unipedal eyes open (F(1,20)=9.42, p=0.006) tests, and mediolateral center of pressure amplitude in bipedal eyes closed (F(1,20)=6.12, p=0.023) and bipedal eyes open (F(1,12)=5.55, p=0.029) tests. In the significant interactions, amplitude increased pre to post condition in the uninterrupted sitting condition. The accumulated 2 h light-intensity treadmill desk walking ameliorated the negative effect of 6.5 h prolonged sitting on postural sway, supporting workplace treadmill desk use.


2007 ◽  
Vol 23 (3) ◽  
pp. 173-179 ◽  
Author(s):  
Alex J.Y. Lee ◽  
Wei-Hsiu Lin

The purpose of this study was to investigate the influence of gender and somatotypes on single-leg upright standing postural stability in children. A total of 709 healthy children from different schools were recruited to measure the anthropometric somatotypes and the mean radius of center of pressure (COP) on a force platform with their eyes open and eyes closed. The results were that (a) girls revealed significantly smaller mean radius of COP distribution than boys, both in the eyes open and eyes closed conditions, and (b) the mesomorphic, muscular children had significantly smaller mean radius of COP distribution than the endomorphic, fatty children and the ectomorphic, linear children during the eyes closed condition. The explanation for gender differences might be due to the larger body weight in boys. The explanation for somatotype differences might be due to the significantly lower body height and higher portion of muscular profile in the mesomorphic children.


2021 ◽  
Author(s):  
Taro Fujimaki ◽  
Masanori Wako ◽  
Kensuke Koyama ◽  
Naoto Furuya ◽  
Ryoji Shinohara ◽  
...  

AbstractFloating toe (FT) is a frequently seen condition in which a toe is inadequately in contact with the ground. Although toes play an important role in stabilizing standing posture and walking, many aspects of the effects of FT on the body remain unclear. To our knowledge, there have been no reports about the relationship between FT and postural stability, especially in children. This study aimed to clarify the prevalence of FT and its relationship with static postural stability in children. Of the 400 children aged 8 years who participated in our cohort study, 396, who were examined for static postural stability, were included in this study. Postural stability and FT were assessed using a foot pressure plate. The sway path length of the center of pressure and the area of the ellipse defined as the size of the area marked by the center of pressure were measured as an evaluation of static postural stability. We calculated the “floating toe score (FT score: small FT score indicates insufficient ground contact of the toes)” using the image of the plantar footprint obtained at the postural stability measurement. The FT rate was very high at more than 90%, and the FT score in the eyes-closed condition was significantly higher than that in the eyes-open condition in both sexes. The FT score significantly correlated with the center of pressure path and area. Our results suggest that ground contact of the toes is not directly related to static postural stability in children, but it may function to stabilize the body when the condition becomes unstable, such as when the eyes are closed.


Author(s):  
Zachary A. M. Cordingley ◽  
Paolo Sanzo ◽  
Carlos Zerpa

Tai chi is effective for improving the postural stability of older adults, but the effects on healthy young adults has yet to be investigated. Currently, the use of virtual delivery platforms for various exercise prescriptions to patients has had to be quickly introduced related to the onset of the COVID-19 pandemic and physical distancing requirements. This study attempted to explore the pre-/post-test measures of postural stability from 15 healthy young adult participants under eyes open (EO) and eyes closed (EC) and firm/foam surface conditions after learning a battery of tai chi exercises and forms delivered by instructional video. Center of pressure-based measures of mean sway velocity (MSV) and 95% elliptical sway area (EA) were assessed. Three-way ANOVAs were conducted to determine if MSV and EA were significantly different across the eye conditions, surface conditions, and time. Both EA and MSV were found to significantly increase from EO to EC on a foam surface; however, only MSV under EC conditions was found to decrease significantly following the intervention.


Motor Control ◽  
2015 ◽  
Vol 19 (3) ◽  
pp. 207-222 ◽  
Author(s):  
Mohan Ganesan ◽  
Yun-Ju Lee ◽  
Alexander S. Aruin

The use of a footrest while performing activity in standing is frequently associated with improvement of a user’s well-being however no information exists on the role of a footrest in improving postural stability. The aim of the study was to evaluate the effects of using a footrest in postural control. Twenty healthy young volunteers were tested using three experimental conditions: standing with two feet on the force platform and standing on the force platform when one foot was placed on a 15 cm footrest positioned in front or laterally. The mean and root mean square distance, range and velocity of the center of pressure (COP) were calculated in the anterior-posterior (AP) and medio-lateral (ML) directions using the force platform data. The COP displacements in AP and ML directions increased in conditions of standing with one foot placed on the footrest regardless of its location. Standing with eyes closed increased COP displacements further. The outcome of the study suggests the importance of using COP measures for evaluation of postural stability and provides additional information needed for optimization of working conditions involving standing with a footrest.


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Ana Silvia Moccellin ◽  
Fernanda G. S. A. Nora ◽  
Paula H. L. Costa ◽  
Patricia Driusso

The hormonal and anatomic changes during pregnancy affect the musculoskeletal system and may lead to instability of static postural control and increased risk of falls. The aim of this study was to analyze changes in static postural control during the three trimesters of pregnancy, using variables derived from the center of pressure. This is a descriptive study in which posturographic tests were applied in four still standing positions, for three trials, with a combination of different visual conditions (eyes open - EO/eyes closed - EC) and support base configurations on 20 non-pregnant women (C) and 13 pregnant women during the gestational period (G1, G2 and G3). For static postural control assessment, a force plate (Bertec®) was used, and the variables analyzed were statokinesigram area, displacement amplitude, displacement velocity and sway frequency. The results demonstrate that, early in pregnancy, the woman's body seems to already change postural control, probably due to increased mobility of the sacroiliac joint and pubic symphysis caused by hormonal factors, and during the trimesters there is a decrease in postural stability, observed as an increase in the elliptical areas, amplitudes of center of pressure displacement and velocity of center of pressure displacement.


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Ana Silvia Moccellin ◽  
Fernanda G. S. A. Nora ◽  
Paula H. L. Costa ◽  
Patricia Driusso

<p>The hormonal and anatomic changes during pregnancy affect the musculoskeletal system and may lead to instability of static postural control and increased risk of falls. The aim of this study was to analyze changes in static postural control during the three trimesters of pregnancy, using variables derived from the center of pressure. This is a descriptive study in which posturographic tests were applied in four still standing positions, for three trials, with a combination of different visual conditions (eyes open - EO/eyes closed - EC) and support base configurations on 20 non-pregnant women (C) and 13 pregnant women during the gestational period (G1, G2 and G3). For static postural control assessment, a force plate (Bertec®) was used, and the variables analyzed were statokinesigram area, displacement amplitude, displacement velocity and sway frequency. The results demonstrate that, early in pregnancy, the woman's body seems to already change postural control, probably due to increased mobility of the sacroiliac joint and pubic symphysis caused by hormonal factors, and during the trimesters there is a decrease in postural stability, observed as an increase in the elliptical areas, amplitudes of center of pressure displacement and velocity of center of pressure displacement.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246010
Author(s):  
Taro Fujimaki ◽  
Masanori Wako ◽  
Kensuke Koyama ◽  
Naoto Furuya ◽  
Ryoji Shinohara ◽  
...  

Floating toe (FT) is a frequently seen condition in which a toe is inadequately in contact with the ground. Although toes play an important role in stabilizing standing posture and walking, many aspects of the effects of FT on the body remain unclear. To our knowledge, there have been no reports about the relationship between FT and postural stability, especially in children. This study aimed to clarify the prevalence of FT and its relationship with static postural stability in children. Of the 400 children aged 8 years who participated in our cohort study, 396, who were examined for static postural stability, were included in this study. Postural stability and FT were assessed using a foot pressure plate. The sway path length of the center of pressure and the area of the ellipse defined as the size of the area marked by the center of pressure, were measured as an evaluation of static postural stability. We calculated the “floating toe score (FT score: small FT score indicates insufficient ground contact of the toes)” using the image of the plantar footprint obtained at the postural stability measurement. The rate of FT was elevated at more than 90%, and the FT score in the eyes-closed condition was significantly higher than that in the eyes-open condition in both sexes. The FT score significantly correlated with the center of pressure path and area. Our results suggest that ground contact of the toes is not directly related to static postural stability in children, but it may function to stabilize the body when the condition becomes unstable, such as when the eyes are closed.


Sign in / Sign up

Export Citation Format

Share Document