Observations in the sheath region ahead of a magnetic cloud and in the dayside magnetosheath during magnetic cloud passage

1994 ◽  
Vol 14 (7) ◽  
pp. 105-110 ◽  
Author(s):  
C.J. Farrugia ◽  
R.J. Fitzenreiter ◽  
L.F. Burlaga ◽  
N.V. Erkaev ◽  
V.A. Osherovich ◽  
...  
Keyword(s):  
2008 ◽  
Vol 26 (10) ◽  
pp. 3153-3158 ◽  
Author(s):  
E. Romashets ◽  
M. Vandas ◽  
S. Poedts

Abstract. It is well-known that interplanetary magnetic clouds can cause strong geomagnetic storms due to the high magnetic field magnitude in their interior, especially if there is a large negative Bz component present. In addition, the magnetic disturbances around such objects can play an important role in their "geo-effectiveness". On the other hand, the magnetic and flow fields in the CME sheath region in front of the body and in the rear of the cloud are important for understanding both the dynamics and the evolution of the interplanetary cloud. The "eventual" aim of this work is to calculate the magnetic field in this CME sheath region in order to evaluate the possible geo-efficiency of the cloud in terms of the maximum |Bz|-component in this region. In this paper we assess the potential of this approach by introducing a model with a simplified geometry. We describe the magnetic field between the CME shock surface and the cloud's boundary by means of a vector potential. We also apply our model and present the magnetic field distribution in the CME sheath region in front of the body and in the rear of the cloud formed after the event of 20 November 2003.


2019 ◽  
Vol 31 ◽  
pp. 27-39
Author(s):  
Veneta Guineva ◽  
Irina Despirak ◽  
Natalia Kleimenova

The dynamics of magnetic substorms at high and middle latitudes during two severe geomagnetic storms: on 17March 2015 and on 22–23 June2015has been analyzed. The storms were rather similar: both storms were a result of the solar wind Sheath impact and both storms were characterized by a strong intensity (SYM/Hmin<–200nT). We studied the magnetic substorms during these storms on the base of the INTERMAGNET and IMAGE networks data. The attendant solar wind and Interplanetary Magnetic Field (IMF) parameters were taken from the OMNI data base. The spatial-temporal dynamics of three substorms was studied in detail: at 17:29 UT and at 22:55 UT during the first storm and at 18:33 UT during the second storm. The substorms on 17.03.2015originated during the main storm phase, and the onset of the substorm on 22.06.2015 followed the storm sudden commencement (SSC) of the second storm. All three substorms were characterized by a sharp poleward expansion of the westward electrojet simultaneously with a slower motion to lower latitudes. They were observed also at middle and low latitudes as positive magnetic bays. The westward electrojet reached ~71°CGMLat during the first two substorms and surpassed 75°CGMLat during the third substorm. Therefore, the first two events were “classical” substorms, and the third one –an “expanded” substorm. We suggested that this behavior is related to the different solar wind conditions: the “classical” substorms developed under magnetic cloud (MC) conditions, and the “expanded” –under the Sheath region effect.


2009 ◽  
Vol 44 (11) ◽  
pp. 1288-1294 ◽  
Author(s):  
C.J. Farrugia ◽  
N.V. Erkaev ◽  
N.C. Maynard ◽  
I.G. Richardson ◽  
P.E. Sandholt ◽  
...  

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Mitsuo Oka ◽  
Takahiro Obara ◽  
Nariaki V. Nitta ◽  
Seiji Yashiro ◽  
Daikou Shiota ◽  
...  

AbstractIn gradual Solar Energetic Particle (SEP) events, shock waves driven by coronal mass ejections (CMEs) play a major role in accelerating particles, and the energetic particle flux enhances substantially when the shock front passes by the observer. Such enhancements are historically referred to as Energetic Storm Particle (ESP) events, but it remains unclear why ESP time profiles vary significantly from event to event. In some cases, energetic protons are not even clearly associated with shocks. Here, we report an unusual, short-duration proton event detected on 5 June 2011 in the compressed sheath region bounded by an interplanetary shock and the leading edge of the interplanetary CME (or ICME) that was driving the shock. While < 10 MeV protons were detected already at the shock front, the higher-energy (> 30 MeV) protons were detected about four hours after the shock arrival, apparently correlated with a turbulent magnetic cavity embedded in the ICME sheath region.


2013 ◽  
Vol 8 (S300) ◽  
pp. 265-268
Author(s):  
Miho Janvier ◽  
Pascal Démoulin ◽  
Sergio Dasso

AbstractMagnetic clouds (MCs) consist of flux ropes that are ejected from the low solar corona during eruptive flares. Following their ejection, they propagate in the interplanetary medium where they can be detected by in situ instruments and heliospheric imagers onboard spacecraft. Although in situ measurements give a wide range of data, these only depict the nature of the MC along the unidirectional trajectory crossing of a spacecraft. As such, direct 3D measurements of MC characteristics are impossible. From a statistical analysis of a wide range of MCs detected at 1 AU by the Wind spacecraft, we propose different methods to deduce the most probable magnetic cloud axis shape. These methods include the comparison of synthetic distributions with observed distributions of the axis orientation, as well as the direct integration of observed probability distribution to deduce the global MC axis shape. The overall shape given by those two methods is then compared with 2D heliospheric images of a propagating MC and we find similar geometrical features.


Solar Physics ◽  
2017 ◽  
Vol 292 (4) ◽  
Author(s):  
Ake Zhao ◽  
Yuming Wang ◽  
Yutian Chi ◽  
Jiajia Liu ◽  
Chenglong Shen ◽  
...  

2010 ◽  
Vol 28 (12) ◽  
pp. 2177-2186 ◽  
Author(s):  
Yu. I. Yermolaev ◽  
N. S. Nikolaeva ◽  
I. G. Lodkina ◽  
M. Yu. Yermolaev

Abstract. A comparison of specific interplanetary conditions for 798 magnetic storms with Dst <−50 nT during 1976–2000 was made on the basis of the OMNI archive data. We categorized various large-scale types of solar wind as interplanetary drivers of storms: corotating interaction region (CIR), Sheath, interplanetary CME (ICME) including both magnetic cloud (MC) and Ejecta, separately MC and Ejecta, and "Indeterminate" type. The data processing was carried out by the method of double superposed epoch analysis which uses two reference times (onset of storm and minimum of Dst index) and makes a re-scaling of the main phase of the storm in a such way that all storms have equal durations of the main phase in the new time reference frame. This method reproduced some well-known results and allowed us to obtain some new results. Specifically, obtained results demonstrate that (1) in accordance with "output/input" criteria the highest efficiency in generation of magnetic storms is observed for Sheath and the lowest one for MC, and (2) there are significant differences in the properties of MC and Ejecta and in their efficiencies.


2021 ◽  
Author(s):  
Mitsuo Oka ◽  
Takahiro Obara ◽  
Nariaki Nitta ◽  
Seiji Yashiro ◽  
Daikou Shiota ◽  
...  

&lt;p&gt;In gradual Solar Energetic Particle (SEP) events, shock waves driven by coronal mass ejections (CMEs) play a major role in accelerating particles, and the energetic particle flux enhances substantially when the shock front passes by the observer. Such enhancements are historically referred to as Energetic Storm Particle (ESP) events, but it remains unclear why ESP time profiles vary significantly from event to event. In some cases, energetic protons are not even clearly associated with shocks. Here we report an unusual, short-duration proton event detected on 5 June 2011 in the compressed sheath region bounded by an interplanetary shock and the leading-edge of the interplanetary CME (or ICME) that was driving the shock. While &lt;10 MeV protons were detected already at the shock front, the higher-energy (&gt;30 MeV) protons were detected about four hours after the shock arrival, apparently correlated with a turbulent magnetic cavity embedded in the ICME sheath region.&lt;/p&gt;


2021 ◽  
Author(s):  
Milla Kalliokoski ◽  
Emilia Kilpua ◽  
Adnane Osmane ◽  
Allison Jaynes ◽  
Drew Turner ◽  
...  

&lt;p&gt;The energetic electron content in the Van Allen radiation belts surrounding the Earth can vary dramatically on timescales from minutes to days, and these electrons present a hazard for spacecraft traversing the belts. The outer belt response to solar wind driving is however yet largely unpredictable. Here we investigate the driving of the belts by sheath regions preceding interplanetary coronal mass ejections. Electron dynamics in the belts is governed by various competing acceleration, transport and loss processes. We analyzed electron phase space density to compare the energization and loss mechanisms during a geoeffective and a non-geoeffective sheath region. These two case studies indicate that ULF-driven inward and outward radial transport, together with the incursions of the magnetopause, play a key role in causing the outer belt electron flux variations. Chorus waves also likely contribute to energization during the geoeffective event. A global picture of the wave activity is achieved through a chorus proxy utilizing POES measurements. We highlight that also the non-geoeffective sheath presented distinct changes in outer belt electron fluxes, which is also evidenced by our statistical study of outer belt electron fluxes during sheath events. While not as intense as during geoeffective sheaths, significant changes in outer belt electron fluxes occur also during sheaths that do not cause major geomagnetic disturbances.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document