Stimulation of translation by reactive oxygen species in a cell-free system

Biochimie ◽  
1995 ◽  
Vol 77 (3) ◽  
pp. 182-189 ◽  
Author(s):  
N. Luciani ◽  
K. Hess ◽  
F. Belleville ◽  
P. Nabet
2018 ◽  
Vol 19 (12) ◽  
pp. 4078 ◽  
Author(s):  
Dahn Clemens ◽  
Michael Duryee ◽  
Cleofes Sarmiento ◽  
Andrew Chiou ◽  
Jacob McGowan ◽  
...  

Doxycycline (DOX), a derivative of tetracycline, is a broad-spectrum antibiotic that exhibits a number of therapeutic activities in addition to its antibacterial properties. For example, DOX has been used in the management of a number of diseases characterized by chronic inflammation. One potential mechanism by which DOX inhibits the progression of these diseases is by reducing oxidative stress, thereby inhibiting subsequent lipid peroxidation and inflammatory responses. Herein, we tested the hypothesis that DOX directly scavenges reactive oxygen species (ROS) and inhibits the formation of redox-mediated malondialdehyde-acetaldehyde (MAA) protein adducts. Using a cell-free system, we demonstrated that DOX scavenged reactive oxygen species (ROS) produced during the formation of MAA-adducts and inhibits the formation of MAA-protein adducts. To determine whether DOX scavenges specific ROS, we examined the ability of DOX to directly scavenge superoxide and hydrogen peroxide. Using electron paramagnetic resonance (EPR) spectroscopy, we found that DOX directly scavenged superoxide, but not hydrogen peroxide. Additionally, we found that DOX inhibits MAA-induced activation of Nrf2, a redox-sensitive transcription factor. Together, these findings demonstrate the under-recognized direct antioxidant property of DOX that may help to explain its therapeutic potential in the treatment of conditions characterized by chronic inflammation and increased oxidative stress.


2010 ◽  
Vol 298 (1) ◽  
pp. F158-F166 ◽  
Author(s):  
Jinu Kim ◽  
Hee-Seong Jang ◽  
Kwon Moo Park

Ischemic preconditioning by a single event of ischemia and reperfusion (SIRPC) dramatically protects renal function against ischemia and reperfusion (I/R) induced several weeks later. We recently reported that reactive oxygen species (ROS) and oxidative stress were sustained in a kidney that had functionally recovered from I/R injury, thus suggesting an association between SIRPC and ROS and oxidative stress. However, the role of ROS in SIRPC remains to be clearly elucidated. To assess the involvement of ROS in SIRPC, mice were subjected to SIRPC (30 min of bilateral renal ischemia and 8 days of reperfusion) and then exposed to I/R injury. Thirty minutes of bilateral renal ischemia in the non-SIRPC mice resulted in a marked increase in plasma creatinine levels 4 and 24 h after reperfusion, which was not observed in the I/R in the SIRPC mice. SIRPC resulted in increases in the levels of kidney superoxide. Administrations of manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin [MnTMPyP; a cell-permeable superoxide dismutase (SOD) mimetic] and N-acetylcysteine (NAc; a ROS scavenger) to SIRPC mice blocked the SIRPC-induced increase in superoxide levels and removed ∼48–64% of the functional protection of the SIRPC kidney. Additionally, these administrations significantly inhibited I/R-induced increases in superoxide formation, hydrogen peroxide production, and lipid peroxidation, along with the inhibition of I/R-induced reductions in the expression and activity of manganese SOD, copper-zinc SOD, and catalase. Furthermore, administrations of MnTMPyP or NAc inhibited the SIRPC-induced increase in inducible nitric oxide synthase expression but did not inhibit the SIRPC-induced increases in heat shock protein-25 expression. In conclusion, the renoprotection afforded by SIRPC was triggered by ROS generated by SIRPC.


Sign in / Sign up

Export Citation Format

Share Document