An in vitro study of short-chain fatty acid concentrations, production and absorption in pig (Sus scrofa) colon

1992 ◽  
Vol 103 (1) ◽  
pp. 189-197 ◽  
Author(s):  
Klavs Holtug ◽  
Henrik Sandvad Rasmussen ◽  
Per Brobech Mortensen
1987 ◽  
Vol 253 (2) ◽  
pp. G171-G178
Author(s):  
M. Hatch

Short-chain fatty acid (SCFA) metabolism and transport were examined in vitro across isolated rabbit cecal epithelia whose primary function is absorption of these solutes. This study shows that although there was some low-level metabolism of SCFAs to ketone bodies by the isolated cecum, a significantly higher oxygen consumption was sustained for a longer time period by tissues incubated in glucose-containing salines. The cecum supported a significant net secretory flux of acetate (J net Ac- = -1.13 +/- 0.13 mu eq X cm-2 X h-1) and propionate (J net Pr- = -0.61 +/- 0.14 mu eq X cm-2 X h-1). This study also shows that glucose significantly enhanced short-circuit current (Isc), tissue conductance (Gt), and sodium transport across this tissue. Neither Ac- nor Pr- enhanced net sodium flux (J net Ac-) but Pr- significantly reduced net chloride flux (J net Cl-), whereas Ac- had no effect. The increase in Isc and Gt observed in the presence of SCFAs was attributable to the presence of SCFA in the serosal bathing solution alone. To explain the latter finding and the unexpected finding of SCFA secretion, the existence of an electrogenic anion (HCO3-) secretory pathway is postulated. It is suggested that this system can accommodate SCFAs in vitro and that it is a Na+-dependent system located on the basolateral membrane of the cecal cell.


2011 ◽  
Vol 76 (5) ◽  
pp. H137-H142 ◽  
Author(s):  
Amandeep Kaur ◽  
Devin J. Rose ◽  
Pinthip Rumpagaporn ◽  
John A. Patterson ◽  
Bruce R. Hamaker

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 79-79
Author(s):  
Jae-Cheol Jang ◽  
Aqsa Javaid ◽  
Pedro E Urriola ◽  
Gerald C Shurson

Abstract An experiment was conducted to investigate the effect of exogenous enzyme supplementation and solid-state fermentation (SSF) with a mixed bacterial culture on in vitro dry matter digestibility (IVDMD) and short chain fatty acid (SCFA) production of soybean meal (SBM) or rapeseed meal (RSM). A 2 × 2 factorial design was used and included the factors of 1) exogenous enzyme cocktail (supplemented and non-supplemented), 2) microbial fermentation (fermented and non-fermented) applied to SBM or RSM in vitro. The exogenous enzyme cocktail consisted of non-starch polysaccharide (NSP) degrading enzymes (NSP-EZ) with phytase (10,000 FTU/kg), and the SSF were carried out using Bacillus subtilis. The fermented feed ingredients were collected after 48 h incubation at 37oC. Samples were hydrolyzed in two steps using pepsin and pancreatin to calculate IVDMD. Subsequently, the hydrolyzed residues were filtered, dried, and pooled for incubation in a buffered mineral solution with fresh swine feces. Gas production kinetics during fermentation was measured for 72 h and analyzed by fitting data to an exponential model. The fermentation residues were filtered, and the supernatant was analyzed for concentration of SCFA. The IVDMD from simulated gastric and small intestinal hydrolysis was greater (P < 0.01) for SSF in both SBM and RSM. During fermentation, the hydrolysis residue from SBM treated with SSF required less time to reach half asymptote, had greater maximal gas production, and greater fractional degradation (P < 0.01, respectively) compared with non-fermented SBM. The IVDMD from simulated total tract digestion was greater (P < 0.01) for SSF in RSM compared with SBM, while SBM had greater IVDMD for both SSF and NSP-EZ (P < 0.01). Production of butyric acid was greater for SSF (P < 0.01) compared with non-SSF in both SBM and RSM. These results suggest that SSF can improve IVDMD and produce greater amounts of butyric acid compared with NSP-EZ supplementation in SBM and RSM.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Philip Allsopp ◽  
Cherry Paul ◽  
Conall Strain ◽  
Supriya Yadav ◽  
Thomas Smyth ◽  
...  

AbstractPrebiotics are considered beneficial to health owing to positive effects upon the gut microbiota (GM). These effects on the GM include stimulating the growth of beneficial species and increasing short chain fatty acid (SCFA) production (1). Accumulating evidence suggests that the putative health benefits associated with seaweed consumption may be, in part, owing to their effects on the GM(2). The red seaweed Palmaria palmata is a source of xylan, a β(1–3) and β(1–4) D-xylose polysaccharide. Given that xylo-oligosaccharides are a recently accepted prebiotic (3), the aim of this investigation was to assess the prebiotic potential of xylan from Palmaria palmata using an in-vitro fermentation gut model. Fibres were subjected to an in-vitro digestion and underwent in-vitro batch culture fermentation (MicroMatrix) over 24 hours. Fermentation vessels were inoculated using a pooled faecal slurry (5% v/v), prepared from six healthy volunteers. Xylan fibre (n = 4) was compared to Cellulose (negative control, n = 8) and Synergy 1 (positive control, n = 8). Changes to GM composition was determined using qPCR (total bacteria, Lactobacilli, and Bifidobacteria), and MiSeq 16S rRNA sequencing. Short chain fatty acid analysis was conducted using gas chromatography-mass spectrometry. The differential abundance of taxa between fermentation substrates was determined using linear discriminant analysis (LDA) effect size (LEfSe). A permutational multivariate analysis of variance (PerMANOVA) was used to determine statistical differences of beta diversity whilst treatment associated differences of short chain fatty acids were determined using an unpaired Mann-Whitney U Test. Xylan altered GM composition at Phylum, Family and Genus taxonomic levels, notably a significant reduction in the Firmicutes/Bacteroides ratio (p = 0.004). Both 16S sequencing data and qPCR analysis revealed a significant increase in Bifidobacteria relative to cellulose, where the effect was comparable to Synergy 1. No significant differences in microbiota diversity were noted for either Xylan or Synergy 1 in comparison to the cellulose control. Xylan was shown to significantly modulate GM activity through increased short chain fatty acid production with increased acetate, propionate and butyrate. The evidence gained from this study suggests that Xylan from Palmaria palmata is a fermentable fibre with potential prebiotic characteristics, and therefore warrants further investigation in humans.This research was funded under the National Development Plan, through the Food Institutional Research Measure, administered by the Department of Agriculture, Food and the Marine, Ireland (13/F/511) and a Northern Ireland Department of Education and Learning PhD scholarship to Paul Cherry.


Sign in / Sign up

Export Citation Format

Share Document