Magnetic and electrical properties of the R(Co, Si)2 compounds (R = Gd, Tb, Dy) with invariable crystal unit cell parameters

1996 ◽  
Vol 152 (1-2) ◽  
pp. 219-225 ◽  
Author(s):  
Nguyen Huu Duc
2016 ◽  
Vol 80 (6) ◽  
pp. 985-994 ◽  
Author(s):  
P. Vignola ◽  
G. D. Gatta ◽  
N. Rotiroti ◽  
P. Gentile ◽  
F. Hatert ◽  
...  

AbstractAlbertiniite, Fe2+(SO3)·3H2O, is a new Fe2+ sulfite trihydrate, related chemically to gravegliaite. It occurs at the Monte Falò Pb-Zn mine near Coiromonte, in the Armeno Municipality, Verbano–Cusio–Ossola Province, Italy. It is an intermediate product of oxidation between iron sulfides and sulfates, forming monoclinic, colourless to pale yellow, transparent crystals with a vitreous lustre. The mineral occurs associated with stolzite, pyromorphite, hinsdalite, plumbogummite, gibbsite, scheelite and jarosite on brittle fractures of quartz veins or chlorite-schist. Albertiniite is optically biaxial (+) with 2V(meas) ≈ 40° and 2V(calc) = 66°. The measured refractive indices, using sodium light (589 nm) are: α = 1.612(2)°, β = 1.618(2)° and γ = 1.632(2)°. The optical axis plane is parallel to the perfect {010} cleavage plane. It is non-fluorescent under shortwave (254 nm) or longwave (366 nm) ultraviolet light. The calculated density is 2.469 g cm–3 (from the crystal-structure refinement), or 2.458 g cm–3 (from the chemical analysis and the single-crystal unit-cell parameters). The empirical formula is (average of 16 spots and based on 3 anhydrous oxygen apfu) (Ca0.001Mg0.001Na0.003)∑1.061(S0.971O3)·2.84H2O, with the H2O content calculated by difference to 100 wt.%. Albertiniite is monoclinic, with space group P21/n. Its unit-cell parameters are: a = 6.633(1), b = 8.831(1), c = 8.773(1) Å, β = 96.106(8)° and V = 511.0(1) Å3, with Z = 4. The eight strongest measured lines in the powder X-ray diffraction pattern are [d in Å, (I/I0), (hkl)]: 4.072 (100) (1̄11), 3.539 (93) (1̄12), 5.533 (27) (1̄01), 6.167 (14) (011), 2.830 (14) (211), 4.998 (14) (101), 4.353 (12) (111) and 3.897 (12) (012). The mineral, which has been approved by the CNMNC, number IMA2015-004, is named albertiniite in honour of Claudio Albertini, an Italian mineral collector and expert in the systematic mineralogy of the Alps and pegmatites.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 466
Author(s):  
Dan Topa ◽  
Uwe Kolitsch

Crystal-structure refinements in space group P21/c were performed on five grains of rathite with different types and degrees of thallium, silver, and antimony substitutions, as well as quantitative electron-microprobe analyses of more than 800 different rathite samples. The results of these studies both enlarged and clarified the complex spectrum of cation substitutions and the crystal chemistry of rathite. The [Tl+ + As3+] ↔ 2Pb2+ scheme of substitution acts at the structural sites Pb1, Pb2, and Me6, the [Ag+ + As3+] ↔ 2Pb2+ substitution at Me5, and the Sb-for-As substitution at the Me3 site only. The homogeneity range of rathite was determined to be unusually large, ranging from very Tl-poor compositions (0.16 wt%; refined single-crystal unit-cell parameters: a = 8.471(2), b = 7.926(2), c = 25.186(5) Å, β = 100.58(3)°, V = 1662.4(6) Å3) to very Tl-rich compositions (11.78 wt%; a = 8.521(2), b = 8.005(2), c = 25.031(5) Å, β = 100.56(3)°, V = 1678.4(6) Å3). The Ag content is only slightly variable (3.1 wt%–4.1 wt%) with a mean value of 3.6 wt%. The Sb content is strongly variable (0.20 wt%–7.71 wt%) and not correlated with the Tl content. With increasing Tl content (0.16 wt%–11.78 wt%), a clear increase of the unit-cell parameters a, b, and V, and a slight decrease of c is observed, although this is somewhat masked by the randomly variable Sb content. The revised general formula of rathite may be written as AgxTlyPb16−2(x+y)As16+x+y−zSbzS40 (with 1.6 < x < 2, 0 < y < 3, 0 < z < 3.5). Based on Pb–S bond lengths, polyhedral characteristics and Pb-site bond-valence sums, we conclude that the Pb1 site is more affected by Tl substitution than the Pb2 site. When Tl substitution reaches values above 13 wt% (or 3 apfu), a new phase (“SR”), belonging to the rahite group, appears as lamellar exsolution intergrowths with Tl-rich rathite (11.78 wt%). Rathite is found only in the Lengenbach and Reckibach deposits, Binntal, Canton Wallis, Switzerland.


Author(s):  
I.N. Yadhikov ◽  
S.K. Maksimov

Convergent beam electron diffraction (CBED) is widely used as a microanalysis tool. By the relative position of HOLZ-lines (Higher Order Laue Zone) in CBED-patterns one can determine the unit cell parameters with a high accuracy up to 0.1%. For this purpose, maps of HOLZ-lines are simulated with the help of a computer so that the best matching of maps with experimental CBED-pattern should be reached. In maps, HOLZ-lines are approximated, as a rule, by straight lines. The actual HOLZ-lines, however, are different from the straights. If we decrease accelerating voltage, the difference is increased and, thus, the accuracy of the unit cell parameters determination by the method becomes lower.To improve the accuracy of measurements it is necessary to give up the HOLZ-lines substitution by the straights. According to the kinematical theory a HOLZ-line is merely a fragment of ellipse arc described by the parametric equationwith arc corresponding to change of β parameter from -90° to +90°, wherevector, h - the distance between Laue zones, g - the value of the reciprocal lattice vector, g‖ - the value of the reciprocal lattice vector projection on zero Laue zone.


Author(s):  
Gunnel Karlsson ◽  
Jan-Olov Bovin ◽  
Michael Bosma

RuBisCO (D-ribulose-l,5-biphosphate carboxylase/oxygenase) is the most aboundant enzyme in the plant cell and it catalyses the key carboxylation reaction of photosynthetic carbon fixation, but also the competing oxygenase reaction of photorespiation. In vitro crystallized RuBisCO has been studied earlier but this investigation concerns in vivo existance of RuBisCO crystals in anthers and leaves ofsugarbeets. For the identification of in vivo protein crystals it is important to be able to determinethe unit cell of cytochemically identified crystals in the same image. In order to obtain the best combination of optimal contrast and resolution we have studied different staining and electron accelerating voltages. It is known that embedding and sectioning can cause deformation and obscure the unit cell parameters.


2021 ◽  
Vol 62 (5) ◽  
Author(s):  
П.C. Серебренникова ◽  
В.Ю. Комаров ◽  
А.С. Сухих ◽  
С.А. Громилов

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1028 ◽  
Author(s):  
M. Mashrur Zaman ◽  
Sytle M. Antao

This study investigates the crystal chemistry of monazite (APO4, where A = Lanthanides = Ln, as well as Y, Th, U, Ca, and Pb) based on four samples from different localities using single-crystal X-ray diffraction and electron-probe microanalysis. The crystal structure of all four samples are well refined, as indicated by their refinement statistics. Relatively large unit-cell parameters (a = 6.7640(5), b = 6.9850(4), c = 6.4500(3) Å, β = 103.584(2)°, and V = 296.22(3) Å3) are obtained for a detrital monazite-Ce from Cox’s Bazar, Bangladesh. Sm-rich monazite from Gunnison County, Colorado, USA, has smaller unit-cell parameters (a = 6.7010(4), b = 6.9080(4), c = 6.4300(4) Å, β = 103.817(3)°, and V = 289.04(3) Å3). The a, b, and c unit-cell parameters vary linearly with the unit-cell volume, V. The change in the a parameter is large (0.2 Å) and is related to the type of cations occupying the A site. The average <A-O> distances vary linearly with V, whereas the average <P-O> distances are nearly constant because the PO4 group is a rigid tetrahedron.


2014 ◽  
Vol 70 (11) ◽  
pp. 1468-1471
Author(s):  
Trung Thanh Thach ◽  
Sangho Lee

Adenylate kinases (AdKs; EC 2.7.3.4) play a critical role in intercellular homeostasis by the interconversion of ATP and AMP to two ADP molecules. Crystal structures of adenylate kinase fromStreptococcus pneumoniaeD39 (SpAdK) have recently been determined using ligand-free and inhibitor-bound crystals belonging to space groupsP21andP1, respectively. Here, new crystal structures of SpAdK in ligand-free and inhibitor-bound states determined at 1.96 and 1.65 Å resolution, respectively, are reported. The new ligand-free crystal belonged to space groupC2, with unit-cell parametersa= 73.5,b= 54.3,c= 62.7 Å, β = 118.8°. The new ligand-free structure revealed an open conformation that differed from the previously determined conformation, with an r.m.s.d on Cαatoms of 1.4 Å. The new crystal of the complex with the two-substrate-mimicking inhibitorP1,P5-bis(adenosine-5′-)pentaphosphate (Ap5A) belonged to space groupP1, with unit-cell parametersa= 53.9,b= 62.3,c= 63.0 Å, α = 101.9, β = 112.6, γ = 89.9°. Despite belonging to the same space group as the previously reported crystal, the new Ap5A-bound crystal contains four molecules in the asymmetric unit, compared with two in the previous crystal, and shows slightly different lattice contacts. These results demonstrate that SpAdK can crystallize promiscuously in different forms and that the open structure is flexible in conformation.


2012 ◽  
Vol 76 (4) ◽  
pp. 963-973 ◽  
Author(s):  
G. O. Lepore ◽  
T. Boffa Ballaran ◽  
F. Nestola ◽  
L. Bindi ◽  
D. Pasqual ◽  
...  

AbstractAmbient temperature X-ray diffraction data were collected at different pressures from two crystals of β-As4S4, which were made by heating realgar under vacuum at 295ºC for 24 h. These data were used to calculate the unit-cell parameters at pressures up to 6.86 GPa. Above 2.86 GPa, it was only possible to make an approximate measurement of the unit-cell parameters. As expected for a crystal structure that contains molecular units held together by weak van der Waals interactions, β-As4S4 has an exceptionally high compressibility. The compressibility data were fitted to a third-order Birch–Murnaghan equation of state with a resulting volume V0 = 808.2(2) Å3, bulk modulus K0 = 10.9(2) GPa and K' = 8.9(3). These values are extremely close to those reported for the low-temperature polymorph of As4S4, realgar, which contains the same As4S4 cage-molecule. Structural analysis showed that the unit-cell contraction is due mainly to the reduction in intermolecular distances, which causes a substantial reduction in the unit-cell volume (∼21% at 6.86 GPa). The cage-like As4S4 molecules are only slightly affected. No phase transitions occur in the pressure range investigated.Micro-Raman spectra, collected across the entire pressure range, show that the peaks associated with As–As stretching have the greatest pressure dependence; the S–As–S bending frequency and the As–S stretching have a much weaker dependence or no variation at all as the pressure increases; this is in excellent agreement with the structural data.


Sign in / Sign up

Export Citation Format

Share Document