Balance between fatty acid degradation and lipid accumulation in cultured smooth muscle cells and IC-21 macrophages exposed to oleic acid

Author(s):  
Madelaine Moinat ◽  
Michel Kossovsky ◽  
Jean-Michel Chevey ◽  
Jean-Paul Giacobino
1998 ◽  
Vol 274 (4) ◽  
pp. C1040-C1046 ◽  
Author(s):  
Agnès Cane ◽  
Michelyne Breton ◽  
Kamen Koumanov ◽  
Gilbert Béréziat ◽  
Odile Colard

Oxidative damage, which plays a major role in the early stages of atherosclerosis, is associated with arachidonic acid (AA) release in vascular smooth muscle cells (VSMC) as in other cell types. In this study, H2O2was used to investigate mechanisms of AA release from VSMC on oxidative stress. Cell treatment with H2O2inhibited AA incorporation in an inverse relationship to prolonged H2O2-induced AA release. Identical kinetics of inhibition of AA incorporation and AA release were observed after cell treatment with A[Formula: see text], a process not involving phospholipase A2(PLA2) activation as recently described (A. Cane, M. Breton, G. Béréziat, and O. Colard. Biochem. Pharmacol. 53: 327–337, 1997). AA release was not specific, since oleic acid also increased in the extracellular medium of cells treated with H2O2or A[Formula: see text] as measured by gas chromatography-mass spectrometry. In contrast, AA and oleic acid cell content decreased after cell treatment. Oleoyl and arachidonoyl acyl-CoA synthases and acyltransferases, assayed using a cell-free system, were not significantly modified. In contrast, a good correlation was observed between decreases in AA acylation and cell ATP content. The decrease in ATP content is only partially accounted for by mitochondrial damage as assayed by rhodamine 123 assay. We conclude that oxidant-induced arachidonate release results from impairment of fatty acid esterification and that ATP availability is probably responsible for free AA accumulation on oxidative stress by preventing its reesterification and/or transmembrane transport.


1996 ◽  
Vol 16 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Federico Calara ◽  
Sean Ameli ◽  
Anna Hultgårdh-Nilsson ◽  
Bojan Cercek ◽  
Joel Kupfer ◽  
...  

1998 ◽  
Vol 35 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Patricia Sansilvestri-Morel ◽  
Isabelle Nonotte ◽  
Marie-Pierre Fournet-Bourguignon ◽  
Alain Rupin ◽  
Jean-Noël Fabiani ◽  
...  

1989 ◽  
Vol 257 (2) ◽  
pp. C297-C305 ◽  
Author(s):  
E. Honore ◽  
C. Martin ◽  
C. Mironneau ◽  
J. Mironneau

The whole cell voltage-clamp technique was used to study the effects of extracellular ATP in cultured smooth muscle cells isolated from pregnant rat myometrium. An inward current was elicited by ATP (IATP) in cells held at -70 mV under voltage clamp. The amplitude of IATP was reduced by estrogen pretreatment and by the end of pregnancy. IATP not only did not undergo any desensitization but showed facilitation. The current-voltage relationship of IATP was linear and reversed close to 0 mV. Changing the sodium electrochemical gradient by decreasing extracellular or intracellular sodium resulted in a linear relationship between the reversal potential of IATP and Na equilibrium potential that, however, differed from the predicted curve for a purely sodium conductance. The conductance activated by ATP was monovalent cation selective with little discrimination between potassium, cesium, and sodium ions. IATP was depressed by divalent cations, and the rank order of potency was Co greater than Mg greater than Ca greater than Ba, suggesting that the free-acid form of ATP was the effective ligand. Adenosine, AMP, and ADP were ineffective in eliciting IATP, whereas ATP gamma S and alpha,beta-methylene ATP were capable of mimicking the effects of ATP, although they were less potent. These results are consistent with the free-acid form of ATP activating a monovalent cation-selective and estrogen-sensitive conductance in myometrium.


Sign in / Sign up

Export Citation Format

Share Document