Cell death and free radicals: A mechanism for hydroxyurea teratogenesis

1979 ◽  
Vol 5 (9) ◽  
pp. 937-951 ◽  
Author(s):  
J.M. DeSesso
Keyword(s):  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zahra Sayyar ◽  
Alireza Yazdinezhad ◽  
Maryam Hassan ◽  
Iraj Jafari Anarkooli

Formaldehyde, as a frequently used compound in many applications, crosses the blood-brain barrier and leads to hippocampal cell death and memory impairment. This study investigates the effects of ethanolic extract of Matricaria chamomilla (MC) on passive avoidance learning induced by damaged hippocampal cells and evaluates the antioxidant traits of MC. The male Wistar rats were divided into six (6 in each) groups: control (10 mg/kg normal saline), 200 (200 mg/kg MC extract), 500 (500 mg/kg MC extract), F (10 mg/kg formaldehyde), F200 (10 mg/kg formaldehyde and 200 mg/kg MC extract), and F500 (10 mg/kg formaldehyde and 500 mg/kg MC extract). Shuttle box assay was used for evaluation of passive avoidance learning. The apoptosis rate of hippocampal tissue, malondialdehyde (MDA) free radicals, and total antioxidant capacity was evaluated to determine the positive effect of the ethanolic extract of MC. We found that the ethanolic extract of MC reduced the cell death, time spent in a dark room, and MDA free radicals in the hippocampus, leading to increased total antioxidant capacity in this region. In conclusion, the ethanolic extract of MC could ameliorate formaldehyde-induced memory damage through decreasing cell death and MDA activity of the hippocampal region and increasing total antioxidant capacity.


2021 ◽  
Vol 4 (4) ◽  
pp. 566-580
Author(s):  
Russel J Reiter ◽  
Ramaswamy Sharma ◽  
Sergio Rosales-Corral

When healthy neurons are exposed to toxins or physiological insults such as ischemia, apoptosis is often initiated. Once underway, this mechanistically-well described process was thought to routinely run its course with the disintegration of the cell and phagocytosis of the debris. Within the last decade, the consistency of this process has been questioned. It is now known that some damaged cells can recover, i.e., they avoid death; this restoration process is referred to as anastasis.  The reestablishment of a healthy cell phenotype is highly energy-requiring, so optimally functioning mitochondria are obviously beneficial during the regenerative process. Some healthy mitochondria that end up in regenerating cells are transferred there by adjacent healthier cells through tunneling nanotubes. Tunneling nanotubes generally form under stressful conditions when these micron-size tubules link adjacent cells. These tubules transfer soluble factors and organelles, including mitochondria, between the connected cells. When damaged cells receive high APT-producing mitochondria via this means, they support the ability of the cells to recover. Two recent comprehensive publications show that melatonin aids the transfer of mitochondria through nanotubes that connect neurons thereby likely assisting the recovery of the damaged recipient cell.  Thus, melatonin not only protects normal neurons from damage by neutralizing the agents that initiate apoptosis, e.g., free radicals, etc., but also reverses this process once it is underway.  


2000 ◽  
Vol 9 (2) ◽  
pp. 179-195 ◽  
Author(s):  
Patrik Brundin ◽  
Jenny Karlsson ◽  
Mia Emgård ◽  
Gabriele S. Kaminski Schierle ◽  
Oskar Hansson ◽  
...  

Neural transplantation is developing into a therapeutic alternative in Parkinson's disease. A major limiting factor is that only 3–20% of grafted dopamine neurons survive the procedure. Recent advances regarding how and when the neurons die indicate that events preceding actual tissue implantation and during the first week thereafter are crucial, and that apoptosis plays a pivotal role. Triggers that may initiate neuronal death in grafts include donor tissue hypoxia and hypoglycemia, mechanical trauma, free radicals, growth factor deprivation, and excessive extracellular concentrations of excitatory amino acids in the host brain. Four distinct phases during grafting that can involve cell death have been identified: retrieval of the embryo; dissection and preparation of the donor tissue; implantation procedure followed by the immediate period after graft injection; and later stages of graft maturation. During these phases, cell death processes involving free radicals and caspase activation (leading to apoptosis) may be triggered, possibly involving an increase in intracellular calcium. We review different approaches that reduce cell death and increase survival of grafted neurons, typically by a factor of 2–4. For example, changes in transplantation procedure such as improved media and implantation technique can be beneficial. Calcium channel antagonists such as nimodipine and flunarizine improve nigral graft survival. Agents that counteract oxidative stress and its consequences, such as superoxide dismutase overexpression, and lazaroids can significantly increase the survival of transplanted dopamine neurons. Also, the inhibition of apoptosis by a caspase inhibitor has marked positive effects. Finally, basic fibroblast growth factor and members of the transforming growth factor-beta superfamily, such as glial cell line-derived neurotrophic factor, significantly improve the outcome of nigral transplants. These recent advances provide hope for improved survival of transplanted neurons in patients with Parkinson's disease, reducing the need for human embryonic donor tissue and increasing the likelihood of a successful outcome.


2021 ◽  
Vol 23 (1) ◽  
pp. 128
Author(s):  
Francesco Pallotti ◽  
Christian Bergamini ◽  
Costanza Lamperti ◽  
Romana Fato

Coenzyme Q (CoQ) is a key component of the respiratory chain of all eukaryotic cells. Its function is closely related to mitochondrial respiration, where it acts as an electron transporter. However, the cellular functions of coenzyme Q are multiple: it is present in all cell membranes, limiting the toxic effect of free radicals, it is a component of LDL, it is involved in the aging process, and its deficiency is linked to several diseases. Recently, it has been proposed that coenzyme Q contributes to suppressing ferroptosis, a type of iron-dependent programmed cell death characterized by lipid peroxidation. In this review, we report the latest hypotheses and theories analyzing the multiple functions of coenzyme Q. The complete knowledge of the various cellular CoQ functions is essential to provide a rational basis for its possible therapeutic use, not only in diseases characterized by primary CoQ deficiency, but also in large number of diseases in which its secondary deficiency has been found.


2016 ◽  
Vol 68 (3) ◽  
pp. 507-517 ◽  
Author(s):  
Jen-Kit Tan ◽  
Sue-Mian Then ◽  
Musalmah Mazlan ◽  
Rahman Jamal ◽  
Wan Zurinah Wan Ngah

2002 ◽  
Vol 51 (2) ◽  
pp. 136-143 ◽  
Author(s):  
Runar Almaas ◽  
Ola Didrik Saugstad ◽  
David Pleasure ◽  
Terje Rootwelt

Author(s):  
Sofie Blížkovská

Metallothioneins (MTs) are small cysteine-rich proteins involved in a number of pathophysiological processes. Particularly their linkage to cancer processes has been vastly studied and it is well known that MTs can inactivate metal-based cytostatics or scavenge free radicals. These processes result in pronounced chemoresistance and a poor prognosis for patients. Despite this knowledge, involvement of specific (sub)isoforms into this phenomenon requires further elucidation. Our results identified CisPt as the cytostatic which provoked the highest cell death exp followed by CarboPt and OxaliPt. Fluorescence microscopy visualized the oxidative cell stress. After application of 24hIC50 values, the reactive oxygen species (ROS) were visually produced. Our results also showed that MT 1, 2 and 3 expression manifested the highest qPCR activity after CisPt treatment (both healthy and cancer cells). While evaluating the expression of the protein level in the healthy and cancer cells treated by the cytotoxics we concluded that for MT1 and MT3 it was low under all three cytostatic treatments. Cancer cells had higher protein expression levels than healthy cells. In case of MT1/2 for cancer cells was highest under CisPt treatment.


Sign in / Sign up

Export Citation Format

Share Document