Melatonin, tunneling nanotubes and anastasis: Cheating cell death

2021 ◽  
Vol 4 (4) ◽  
pp. 566-580
Author(s):  
Russel J Reiter ◽  
Ramaswamy Sharma ◽  
Sergio Rosales-Corral

When healthy neurons are exposed to toxins or physiological insults such as ischemia, apoptosis is often initiated. Once underway, this mechanistically-well described process was thought to routinely run its course with the disintegration of the cell and phagocytosis of the debris. Within the last decade, the consistency of this process has been questioned. It is now known that some damaged cells can recover, i.e., they avoid death; this restoration process is referred to as anastasis.  The reestablishment of a healthy cell phenotype is highly energy-requiring, so optimally functioning mitochondria are obviously beneficial during the regenerative process. Some healthy mitochondria that end up in regenerating cells are transferred there by adjacent healthier cells through tunneling nanotubes. Tunneling nanotubes generally form under stressful conditions when these micron-size tubules link adjacent cells. These tubules transfer soluble factors and organelles, including mitochondria, between the connected cells. When damaged cells receive high APT-producing mitochondria via this means, they support the ability of the cells to recover. Two recent comprehensive publications show that melatonin aids the transfer of mitochondria through nanotubes that connect neurons thereby likely assisting the recovery of the damaged recipient cell.  Thus, melatonin not only protects normal neurons from damage by neutralizing the agents that initiate apoptosis, e.g., free radicals, etc., but also reverses this process once it is underway.  

2018 ◽  
Vol 3 (29) ◽  
pp. eaat7061 ◽  
Author(s):  
Bei Wang ◽  
Wen Zhang ◽  
Vladimir Jankovic ◽  
Jacquelynn Golubov ◽  
Patrick Poon ◽  
...  

Most patients with cancer do not develop durable antitumor responses after programmed cell death protein 1 (PD-1) or programmed cell death ligand 1(PD-L1) checkpoint inhibition monotherapy because of an ephemeral reversal of T cell dysfunction and failure to promote long-lasting immunological T cell memory. Activating costimulatory pathways to induce stronger T cell activation may improve the efficacy of checkpoint inhibition and lead to durable antitumor responses. We performed single-cell RNA sequencing of more than 2000 tumor-infiltrating CD8+T cells in mice receiving both PD-1 and GITR (glucocorticoid-induced tumor necrosis factor receptor–related protein) antibodies and found that this combination synergistically enhanced the effector function of expanded CD8+T cells by restoring the balance of key homeostatic regulators CD226 and T cell immunoreceptor with Ig and ITIM domains (TIGIT), leading to a robust survival benefit. Combination therapy decreased CD8+T cell dysfunction and induced a highly proliferative precursor effector memory T cell phenotype in a CD226-dependent manner. PD-1 inhibition rescued CD226 activity by preventing PD-1–Src homology region 2 (SHP2) dephosphophorylation of the CD226 intracellular domain, whereas GITR agonism decreased TIGIT expression. Unmasking the molecular pathways driving durable antitumor responses will be essential to the development of rational approaches to optimizing cancer immunotherapy.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zahra Sayyar ◽  
Alireza Yazdinezhad ◽  
Maryam Hassan ◽  
Iraj Jafari Anarkooli

Formaldehyde, as a frequently used compound in many applications, crosses the blood-brain barrier and leads to hippocampal cell death and memory impairment. This study investigates the effects of ethanolic extract of Matricaria chamomilla (MC) on passive avoidance learning induced by damaged hippocampal cells and evaluates the antioxidant traits of MC. The male Wistar rats were divided into six (6 in each) groups: control (10 mg/kg normal saline), 200 (200 mg/kg MC extract), 500 (500 mg/kg MC extract), F (10 mg/kg formaldehyde), F200 (10 mg/kg formaldehyde and 200 mg/kg MC extract), and F500 (10 mg/kg formaldehyde and 500 mg/kg MC extract). Shuttle box assay was used for evaluation of passive avoidance learning. The apoptosis rate of hippocampal tissue, malondialdehyde (MDA) free radicals, and total antioxidant capacity was evaluated to determine the positive effect of the ethanolic extract of MC. We found that the ethanolic extract of MC reduced the cell death, time spent in a dark room, and MDA free radicals in the hippocampus, leading to increased total antioxidant capacity in this region. In conclusion, the ethanolic extract of MC could ameliorate formaldehyde-induced memory damage through decreasing cell death and MDA activity of the hippocampal region and increasing total antioxidant capacity.


Author(s):  
Yoshimitsu Kiriyama ◽  
Hiromi Nochi

Mitochondria function to generate ATP and also play important roles in cellular homeostasis, signaling, apoptosis, autophagy, and metabolism. The loss of mitochondrial function results in cell death and various types of diseases. Therefore, quality control of mitochondria via intra- and intercellular pathways is crucial. Intracellular quality control consists of biogenesis, fusion and fission, and degradation of mitochondria in the cell, whereas intercellular quality control involves tunneling nanotubes and extracellular vesicles. In this review, we outline the current knowledge on the intra- and intercellular quality control mechanisms of mitochondria.


2000 ◽  
Vol 9 (2) ◽  
pp. 179-195 ◽  
Author(s):  
Patrik Brundin ◽  
Jenny Karlsson ◽  
Mia Emgård ◽  
Gabriele S. Kaminski Schierle ◽  
Oskar Hansson ◽  
...  

Neural transplantation is developing into a therapeutic alternative in Parkinson's disease. A major limiting factor is that only 3–20% of grafted dopamine neurons survive the procedure. Recent advances regarding how and when the neurons die indicate that events preceding actual tissue implantation and during the first week thereafter are crucial, and that apoptosis plays a pivotal role. Triggers that may initiate neuronal death in grafts include donor tissue hypoxia and hypoglycemia, mechanical trauma, free radicals, growth factor deprivation, and excessive extracellular concentrations of excitatory amino acids in the host brain. Four distinct phases during grafting that can involve cell death have been identified: retrieval of the embryo; dissection and preparation of the donor tissue; implantation procedure followed by the immediate period after graft injection; and later stages of graft maturation. During these phases, cell death processes involving free radicals and caspase activation (leading to apoptosis) may be triggered, possibly involving an increase in intracellular calcium. We review different approaches that reduce cell death and increase survival of grafted neurons, typically by a factor of 2–4. For example, changes in transplantation procedure such as improved media and implantation technique can be beneficial. Calcium channel antagonists such as nimodipine and flunarizine improve nigral graft survival. Agents that counteract oxidative stress and its consequences, such as superoxide dismutase overexpression, and lazaroids can significantly increase the survival of transplanted dopamine neurons. Also, the inhibition of apoptosis by a caspase inhibitor has marked positive effects. Finally, basic fibroblast growth factor and members of the transforming growth factor-beta superfamily, such as glial cell line-derived neurotrophic factor, significantly improve the outcome of nigral transplants. These recent advances provide hope for improved survival of transplanted neurons in patients with Parkinson's disease, reducing the need for human embryonic donor tissue and increasing the likelihood of a successful outcome.


2021 ◽  
Vol 23 (1) ◽  
pp. 128
Author(s):  
Francesco Pallotti ◽  
Christian Bergamini ◽  
Costanza Lamperti ◽  
Romana Fato

Coenzyme Q (CoQ) is a key component of the respiratory chain of all eukaryotic cells. Its function is closely related to mitochondrial respiration, where it acts as an electron transporter. However, the cellular functions of coenzyme Q are multiple: it is present in all cell membranes, limiting the toxic effect of free radicals, it is a component of LDL, it is involved in the aging process, and its deficiency is linked to several diseases. Recently, it has been proposed that coenzyme Q contributes to suppressing ferroptosis, a type of iron-dependent programmed cell death characterized by lipid peroxidation. In this review, we report the latest hypotheses and theories analyzing the multiple functions of coenzyme Q. The complete knowledge of the various cellular CoQ functions is essential to provide a rational basis for its possible therapeutic use, not only in diseases characterized by primary CoQ deficiency, but also in large number of diseases in which its secondary deficiency has been found.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2425-2425
Author(s):  
Denise Ray ◽  
Kimberly Morse ◽  
Shannon Hilchey ◽  
Tatiana Garcia ◽  
Raymond Felgar ◽  
...  

Abstract Ligands for the transcription factor PPARγ are emerging as a new class of anti-tumor agents. Herein we report that the synthetic triterpenoid CDDO, a PPARγ ligand that induces PPARγ transcriptional activity in human DLCL OCI-Ly-19 cells, also induces cell death in human DLCL of both germinal center (OCI-Ly19) and activated B-cell phenotype (OCI-Ly10), cells which express the PPARγ protein. This effect of CDDO appears to be independent of PPARγ stimulated pathways since the functional antagonist of PPARγ, GW9662, which completely inhibits CDDO induced PPARγ transcriptional activity was unable to prevent CDDO induced cell death. Similar findings were seen using the additional PPARγ antagonists T0070907 and BADGE. CDDO induces cell death by inhibiting cell proliferation and inducing apoptosis as shown by Annexin-V and propidium iodide staining. As we have previously shown that PPARγ ligands inhibit NF-κB activity in B lymphocytes (J. Immunol2005; 174(7): 4060–9), we next examined the effect of CDDO on NF-κB in DLCL cells. Surprisingly, exposure of Ly19 cells to CDDO resulted in a dose-, and time-dependent increase in the activity of both the p50 and p65 subunits of NF-κB as determined by ELISA, by direct visualization of the nuclear translocation of p65 using indirect immunofluorescence assays, and by EMSA. The nuclear translocation of both the p50 and p65 NF-κB subunits was also confirmed by performing immunoblot analyses using nuclear fractions of CDDO-treated Ly19 cells. NF-κB activation was also observed in Ly10 cells exposed to CDDO. Follow-up experiments revealed that the activation of NF-κB in Ly19 cells by CDDO was due to proteolysis of inhibitory IκBα molecules. To determine whether the CDDO-induced NF-κB activation was a pro- survival mechanism, Ly19 and Ly10 cells were pre-treated with the NF-κB inhibitors SN50, helenalin or BAY 11-7082 and then exposed to CDDO for 24 hrs. In all cases, the NF-κB inhibitors significantly enhanced CDDO induced cell death suggesting that NF-κB activation is an anti-apoptotic mechanism elicited to protect the cell against CDDO cytotoxicity. Collectively, these studies suggest that; (a) CDDO (which will shortly be entering clinical trials for patients with acute myeloid leukemia) as a single agent may have significant clinical activity in patients with DLCL and; (b) the combination of CDDO with pharmacological inhibitors of NF-κB would be a rationale combination of novel agents to test in the context of clinical trials for patients with DLCL.


Sign in / Sign up

Export Citation Format

Share Document