Degradation of mechanical properties of cast Cr-Mo-V and Cr-W-V steam turbine casings after long-term service at elevated temperatures. Part II: Fracture toughness, correlation of fracture toughness with Charpy V-notch toughness

1994 ◽  
Vol 57 (2) ◽  
pp. 153-161 ◽  
Author(s):  
M. Holzmann ◽  
J. Man ◽  
B. Vlach ◽  
J. Krumpos
Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


2004 ◽  
Vol 818 ◽  
Author(s):  
R. O. Ritchie ◽  
X.-F. Zhang ◽  
L. C. De Jonghe

AbstractThrough control of the grain-boundary structure, principally in the nature of the nanoscale intergranular films, a silicon carbide with a fracture toughness as high as 9.1 MPa.m1/2 has been developed by hot pressing β-SiC powder with aluminum, boron, and carbon additions (ABC-SiC). Central in this material development has been systematic transmission electron microscopy (TEM) and mechanical characterizations. In particular, atomic-resolution electron microscopy and nanoprobe composition quantification were combined in analyzing grain boundary structure and nanoscale structural features. Elongated SiC grains with 1 nm-wide amorphous intergranular films were believed to be responsible for the in situ toughening of this material, specifically by mechanisms of crack deflection and grain bridging. Two methods were found to be effective in modifying microstructure and optimizing mechanical performance. First, prescribed post-annealing treatments at temperatures between 1100 and 1500°C were seen to cause full crystallization of the amorphous intergranular films and to introduce uniformly dispersed nanoprecipitates within SiC matrix grains; in addition, lattice diffusion of aluminum at elevated temperatures was seen to alter grain-boundary composition. Second, adjusting the nominal content of sintering additives was also observed to change the grain morphology, the grain-boundary structure, and the phase composition of the ABC-SiC. In this regard, the roles of individual additives in developing boundary microstructures were identified; this was demonstrated to be critical in optimizing the mechanical properties, including fracture toughness and fatigue resistance at ambient and elevated temperatures, flexural strength, wear resistance, and creep resistance.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shahril Anuar Bahari ◽  
Warren J. Grigsby ◽  
Andreas Krause

Polyvinyl chloride (PVC)/bamboo composites have been prepared and assessed for their use in interior and exterior load-bearing applications. PVC composites were formed by compounding PVC with different bamboo particle sizes and loadings. The mechanical properties of these composites were determined at both ambient and elevated temperatures and after long-term water soaking. Analysis revealed that bamboo incorporation improved the PVC composite flexural modulus which was also observed with dynamic mechanical-thermal analysis on heating composites toca.70°C. Addition of 25% and 50% bamboo particles increases flexural modulus by 80% with dependency on whether fine (<75 μm) or coarse (<1 mm) particles were used. On water soaking to saturation, composites had water weight uptakes of 10%, with reduced flexural properties obtained for all water-soaked composites. Nonetheless, the results of this study show that PVC/bamboo composites achieve the minimum flexural performance of ASTM D 6662, indicating potential for their use in exterior applications.


2016 ◽  
Vol 16 (4) ◽  
pp. 38-44
Author(s):  
J. Łabanowski ◽  
M. Jurkowski ◽  
M. Landowski

Abstract Microstructure transformations occur in the Manaurite XM cast steel tubes during long-term operation in the reformer furnace were revealed and described. The relationship between mechanical properties, an increase of internal diameter of the tube and microstructure degradation is discussed. Static tensile test was performed on two types of samples with different shapes. It has been shown differences in the results of tests and an explanation of this phenomenon.


Author(s):  
Ryuji Muraoka ◽  
Mitsuhiro Okatsu ◽  
Nobuyuki Ishikawa ◽  
Shigeru Endo ◽  
Shinichi Kakihara ◽  
...  

Recently, X80 grade UOE pipes have been planned to apply to steam injecting oil sand recovery systems to increase the volume of steam to be injected and lowering installation cost. The pipes for systems are subjected to high temperature for a long time, such as 350-C, for 20 years. Before real applications of the pipes, it is important to ensure the reliability of the pipes during and after long-term operations. In this study, in order to establish simulation conditions for 350-C × 20 years of operation, the change in microstructure and resulting mechanical properties of X80 grade pipes after a long-term exposure at elevated temperatures were investigated. Then, mechanical properties of the pipes subjected to the established simulated condition were examined. Change in the microstructure was quite small after exposure of 400-C and lower temperatures. Tensile strengths of the base metal and seam weld after up to 400-C of heat treatment can be arranged with the Larson-Miller parameter composed with temperature and holding time of the heat treatments. Therefore, heat treatments at 400-C for shorter than 20 years can be simulation conditions for the operation condition of the systems. As a result of mechanical tests simulating long-term exposure, satisfied performance of X80 grade pipes can be obtained.


Alloy Digest ◽  
1981 ◽  
Vol 30 (12) ◽  

Abstract UNILOY 17-4 is a unique stainless steel. It can be annealed (solution treated) to produce a martensite-austenite mixture and then aged to various levels of hardness and strength. It has high mechanical properties including good strength at both sub-zero and elevated temperatures. Its corrosion resistance is excellent. Its many applications include gears, splines, shafts, valves, fasteners and couplings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SS-397. Producer or source: Cyclops.


Sign in / Sign up

Export Citation Format

Share Document