Mechanical Properties of X80 Grade UOE Pipe for Long-Term Exposure at Elevated Temperature

Author(s):  
Ryuji Muraoka ◽  
Mitsuhiro Okatsu ◽  
Nobuyuki Ishikawa ◽  
Shigeru Endo ◽  
Shinichi Kakihara ◽  
...  

Recently, X80 grade UOE pipes have been planned to apply to steam injecting oil sand recovery systems to increase the volume of steam to be injected and lowering installation cost. The pipes for systems are subjected to high temperature for a long time, such as 350-C, for 20 years. Before real applications of the pipes, it is important to ensure the reliability of the pipes during and after long-term operations. In this study, in order to establish simulation conditions for 350-C × 20 years of operation, the change in microstructure and resulting mechanical properties of X80 grade pipes after a long-term exposure at elevated temperatures were investigated. Then, mechanical properties of the pipes subjected to the established simulated condition were examined. Change in the microstructure was quite small after exposure of 400-C and lower temperatures. Tensile strengths of the base metal and seam weld after up to 400-C of heat treatment can be arranged with the Larson-Miller parameter composed with temperature and holding time of the heat treatments. Therefore, heat treatments at 400-C for shorter than 20 years can be simulation conditions for the operation condition of the systems. As a result of mechanical tests simulating long-term exposure, satisfied performance of X80 grade pipes can be obtained.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shahril Anuar Bahari ◽  
Warren J. Grigsby ◽  
Andreas Krause

Polyvinyl chloride (PVC)/bamboo composites have been prepared and assessed for their use in interior and exterior load-bearing applications. PVC composites were formed by compounding PVC with different bamboo particle sizes and loadings. The mechanical properties of these composites were determined at both ambient and elevated temperatures and after long-term water soaking. Analysis revealed that bamboo incorporation improved the PVC composite flexural modulus which was also observed with dynamic mechanical-thermal analysis on heating composites toca.70°C. Addition of 25% and 50% bamboo particles increases flexural modulus by 80% with dependency on whether fine (<75 μm) or coarse (<1 mm) particles were used. On water soaking to saturation, composites had water weight uptakes of 10%, with reduced flexural properties obtained for all water-soaked composites. Nonetheless, the results of this study show that PVC/bamboo composites achieve the minimum flexural performance of ASTM D 6662, indicating potential for their use in exterior applications.


2011 ◽  
Vol 678 ◽  
pp. 23-47 ◽  
Author(s):  
Paolo Deodati ◽  
Riccardo Donnini ◽  
Saulius Kaciulis ◽  
Majid Kazemian-Abyaneh ◽  
Alessio Mezzi ◽  
...  

The paper reports the results of an extensive characterization of the Ti6Al4V-SiCfcomposite produced by hot isostatic pressing (HIP) to assess its capability to withstand the in-service conditions of turbine blades operating at middle temperatures in aeronautical engines. The microstructure of composite, in as-fabricated condition and after long-term heat treatments (up to 1,000 hours) in the temperature range 673-873 K, has been investigated by means of different techniques. Particular attention was paid to the micro-chemical evolution of fibre-matrix interface which is scarcely affected also by the most severe heat treatments examined here. This leads to stable mechanical properties as evidenced by hardness, tensile and FIMEC instrumented indentation tests. Therefore, the composite can operate at the maximum temperature (873 K) foreseen for its aeronautical applications without remarkable modifications of its microstructure and degradation of mechanical properties. The mechanical characterization has been completed by internal friction and dynamic modulus measurements carried out both at constant and increasing temperature, from 80 to 1173 K.


2015 ◽  
Vol 647 ◽  
pp. 38-46
Author(s):  
Jakub Horník ◽  
Petr Zuna ◽  
Jaroslav Malek ◽  
Tomáš Jetmar ◽  
Josef Kasl ◽  
...  

Two types of steels used for production of heavy forgings were selected for the experimental evaluation of the effect of long time dwell at elevated temperatures and cooling during heat treatment on their mechanical properties in order avoid the possibility of grain boundary embrittlement. Samples from evaluated steels 26NiCrMoV14-5 and 22CrNiMoWV8-8 were austenitized for 2 hours at temperature of 1200°C and oil quenched. Subsequently the annealing at temperatures (200 - 700)°C for 1 hour and 100 hours was applied. Selected mechanical properties, especially hardness and impact energy, were monitored. It was found that for steels 26NiCrMoV14‑5 and 22CrMoNiWV8-8 exist the temperature intervals (300 - 400)°C and (500 ‑ 600)°C respectively with the possible potential for toughness decreasing.


2016 ◽  
Vol 16 (4) ◽  
pp. 38-44
Author(s):  
J. Łabanowski ◽  
M. Jurkowski ◽  
M. Landowski

Abstract Microstructure transformations occur in the Manaurite XM cast steel tubes during long-term operation in the reformer furnace were revealed and described. The relationship between mechanical properties, an increase of internal diameter of the tube and microstructure degradation is discussed. Static tensile test was performed on two types of samples with different shapes. It has been shown differences in the results of tests and an explanation of this phenomenon.


1990 ◽  
Vol 194 ◽  
Author(s):  
P. R. Subramanian ◽  
M. G. Mendiratta ◽  
D. B. Miracle ◽  
D. M. Dimiduk

AbstractThe quasibinary NiAI-Mo system exhibits a large two-phase field between NiAl and the terminal (Mo) solid solution, and offers the potential for producing in-situ eutectic composites for high-temperature structural applications. The phase stability of this composite system was experimentally evaluated, following long-term exposures at elevated temperatures. Bend strengths as a function of temperature and room-temperature fracture toughness data are presented for selected NiA1-Mo alloys, together with results from fractography observations.


2016 ◽  
Vol 722 ◽  
pp. 27-32
Author(s):  
František Girgle ◽  
Lenka Bodnárová ◽  
Anna Matusikova ◽  
Vojtěch Kostiha ◽  
Jan Prokeš ◽  
...  

This paper deals with actual issues concerning the design and the utilization of modern composite reinforcement (FRP) in concrete structures. These advanced composite materials are, especially if the whole life cycle of the structure is considered, gradually becoming a convenient alternative to ordinary steel reinforcement. The structure reinforced with FRP reinforcement (as well as the structure reinforced with steel reinforcement) has to be designed with regard to sufficient endurance, serviceability and durability. The long-term material properties of FRP reinforcement embedded in concrete, which are influenced by temperature, load magnitude and ambient environment, must be considered during design of the structure. A high alkali environment of concrete with pH higher than 12.0 acts mainly on glass fibres which degrade and their mechanical properties are reduced consequently. The used matrix creates a barrier which insulates the bearing fibres against alkali ions attack. The main objective of the paper is therefore to describe behaviour of composite as a whole. The experimental approach and results which were reached during the tests are also presented. An effort was to specify the impact of alkali environment on the long-time properties of developed reinforcement which could be used in durable concrete structures.


1996 ◽  
Vol 11 (12) ◽  
pp. 3024-3038 ◽  
Author(s):  
I. E. Locci ◽  
R.M. Dickerson ◽  
A. Garg ◽  
R. D. Noebe ◽  
J.D. Whittenberger ◽  
...  

Six near stoichiometric, NiAl single-crystal alloys, with 0.05−1.5 at.% of Hf and Zr additions plus Si impurities, were microstructurally analyzed in the as-cast, homogenized, and aged conditions. Hafnium-rich interdendritic regions, containing the Heusler phase (Ni2AlHf), were found in all the as-cast alloys containing Hf. Homogenization heat treatments partially reduced these interdendritic segregated regions. Transmission electron microscopy (TEM) observations of the as-cast and homogenized microstructures revealed the presence of a high density of fine Hf (or Zr) and Si-rich precipitates. These were identified as G-phase, Ni16X6Si7, or as an orthorhombic NiXSi phase, where X is Hf or Zr. Under these conditions the expected Heusler phase (β′) was almost completely absent. The Si responsible for the formation of the G and NiHfSi phases is the result of molten metal reacting with the Si-containing crucible used during the casting process. Varying the cooling rates after homogenization resulted in the refinement or complete suppression of the G and NiHfSi phases. In some of the alloys studied, long-term aging heat treatments resulted in the formation of Heusler precipitates, which were more stable at the aging temperature and coarsened at the expense of the G-phase. In other alloys, long-term aging resulted in the formation of the NiXSi phase. The stability of the Heusler or NiXSi phases can be traced to the reactive element (Hf or Zr) to silicon ratio. If the ratio is high, then the Heusler phase appears stable after long time aging. If the ratio is low, then the NiHfSi phase appears to be the stable phase.


Sign in / Sign up

Export Citation Format

Share Document