Effect of extrusion process variables on in-vitro protein digestibility of fish-wheat flour blends

1988 ◽  
Vol 28 (3) ◽  
pp. 225-231 ◽  
Author(s):  
S Bhattacharya
2015 ◽  
Vol 4 (2) ◽  
pp. 78 ◽  
Author(s):  
David B. Kiin-Kabari ◽  
Sunday Y. Giami

<p>Plantain flour was prepared from matured-unripe fruits of Agbagba cultivar, protein concentrate was prepared from bambara groundnut seeds using the alkaline extraction method, plantain cookies were produced using different levels of plantain flour substituted with bambara groundnut protein concentrate ranging from 0-25% and using 100% wheat flour as control. Physical characteristics, proximate composition, sensory properties and in-vitro protein digestibility of the cookie samples were determined. Cookies prepared from 15% bambara groundnut protein concentrate and 85% plantain flour compared favourably in physical characteristics (weight, height, diameter and hardness) with the control (100% wheat flour). Addition of bambara groundnut protein concentrate significantly improved the crude protein content (17.8%), ash content (2.8%), crude fibre (9.2%) and energy (434.0 kcal/100g) of the cookies compared to values obtained from 100% wheat flour. Sensory evaluation showed that cookies with 15% bambara groundnut protein concentrate and 85% plantain flour was preferred in terms of colour, flavor and general acceptability with mean scores of 8.1, 8.3 and 7.8, respectively and showed no significant difference (P ? 0.05) with the control with mean scores of 8.6, 8.5 and 8.0, respectively. However, in-vitro protein digestibility of the cookies increased from 2.74% in cookies with 100% plantain flour to 62.81% in samples with 25% bambara groundnut protein concentrate and 75% plantain flour.</p>


2020 ◽  
pp. 34-42
Author(s):  
V. C. Wabali ◽  
S. Y. Giami ◽  
D. B. Kiin- Kabari ◽  
O. M. Akusu

The objective of this work was to evaluate the Amino Acid profile/score and In-vitro protein digestibility of composite biscuits produced from blends of Wheat flour (WHF), African breadfruit flour (ABF)and Moringa seed flour(MSF) at the following ratios (Sample A: WHF 100%: ABF 0; MSF 0, B= WHF 77.5%:ABF 20%: MSF 2.5%, C=WHF 75%: ABF 20%: MSF 5.0%, D= WHF 72.5%: ABF 20%: MSF 7.5%. E = WHF 70%: ABF 20%: MSF 10%, F = WHF 90%: ABF 0: MSF 10%, G = WHF 80%: ABF 20%: MSF 0). The most predominant Amino Acid in ABF was glutamic (12.27 g/100 g) followed by Aspartic and lysine, with values of 8.96 g/100 g and 6.55 g/100 g, respectively. Glutamic Acid content of the biscuits ranged from 10.96 g/100 g – 12.96 g/100 g, with sample B giving significantly higher value. Substitution with MSF resulted in decreasing glutamic acid content levels in the formulated biscuits, while lysine, phenylalanine and Isoleucine improved with the addition of 10% Moringa seed flour. Amino acid Scores of the biscuits using Hen egg as standard showed that whole egg had a higher amino acid score except glycine (1.04 – 1.25). Percentage In-vitro protein digestibility ranged from 10.64% - 47.33%, showing that addition of moringa seed flour and African breadfruit flour improved digestibility values from 10.64% to 47.33% for sample E with the control sample (wheat flour biscuit) being significantly lower. Substitution with ABF and MSF improved protein digestibility of the produced biscuits. Also, the Amino acid scores of the formulated biscuits were higher than the FAO recommended daily dietary requirements for Amino acids.


2021 ◽  
pp. 66-75
Author(s):  
T. M. Ukeyima ◽  
I. A. Akor ◽  
B. Kyenge

In-vitro digestibility, nutritional and sensory quality of extruded breakfast cereals from maize grits, partially defatted peanut and beetroot flour blends was investigated. Composite flour blends was prepared from maize, peanut and beetroot flour in the following proportions: A= (100% maize flour as control), B = (90:0:10), C = (90:10:0), D = (80:10:10), E= (70:20:10), F = (60:30:10), and G = (50:40:10). The breakfast cereals were analyzed for proximate, vitamins, in-vitro protein digestibility and sensory properties. There was significant (P<0.05) difference in the proximate composition, the values ranged from; 4.46 to 6.82%, 3.22 - 7.32%, 0.98 to 1.23%, 3.32 – 4.55%, 3.7 – 4.34% and 75.7 – 83.96% for moisture, protein, fat, fibre, ash, and carbohydrate respectively while energy ranged from 343.31 to 357.54Kcal.  Vitamins A, B1, B2, B6 and C values ranged from 1.60–1671.84 IU, 0.95 – 1.43, 0.95 – 1.50, 1.09 – 1.75 and 8.77 – 16.22 respectively. There was increase in in-vitro protein digestibility of the samples with addition of defatted peanut and beetroot. Sensory evaluation results showed that sample C had the highest acceptability on 9-point hedonic scale.


2020 ◽  
pp. 17-26
Author(s):  
V. C. Wabali ◽  
S. Y. Giami ◽  
D. B. Kiin-Kabari ◽  
O. M. Akusu

Biscuits were produced from wheat, African walnut and Moringa seed flour blends and chemical, physical, in-vitro protein digestibility, ant-nutrient and sensory properties of the products were evaluated. Chemical compositions of the biscuit samples revealed that sample E was significantly higher (p < 0.05) in ether extract (30.16%) and ash (4.20%) while sample F had a significantly higher protein content of 11.41%. The weight of the biscuit samples increased with increasing substitution levels with Moringa seed flour from 9.73–12.08 g. The heights of the samples were not affected by substitution levels. In-vitro protein digestibility values of the biscuits showed remarkable improvement from 11.03% for the control sample to 69.03% for sample E. Anti-nutrient content of the formulated biscuits showed that oxalate had values ranging from 18.68–35.71mg/100g, phytate 0.61–9.21mg/100g, saponin 0.46–8.41%, trypsin inhibitor 2.31–6.80mg/100g, tannin 18.68–35.71 mg/100g and cyanide 0.02–0.44mg/100g. Sensory evaluation scores showed decreasing values in flavour and overall acceptability with increased levels of substitution with Moringa seed flour (7.5–10%) in the biscuit formulation. Although, these substitution levels led to an improvement in protein content, fibre and protein digestibility of the biscuit samples.


2020 ◽  
Vol 16 (5) ◽  
pp. 749-756
Author(s):  
Fredrick B. Agengo ◽  
Arnold N. Onyango ◽  
Charlotte A. Serrem ◽  
Judith Okoth

Background: Formulation of composite flours from wheat and non-wheat flours has been proposed as the most desirable way to improve the nutritional quality in diets, promote food security and lower the cost of baked products. Objective: This study evaluated the effect of fortification with snail meat powder on physicochemical properties and shelf-life of sorghum-wheat buns. Methods: Buns were prepared by replacing a part of sorghum-wheat flour with 5, 10, 15, 20, and 25% of snail meat powder. Physical properties including volume, density, baking loss, yield, weight, hardness and colour, the proximate analyses including moisture, crude protein, crude fat, crude fibre and ash and mineral composition of iron, zinc, calcium, magnesium and copper were analyzed for the buns. In vitro protein digestibility was determined by pepsin digestion. Plate count agar and potato dextrose agar were respectively used for enumeration of bacterial and fungal flora in the buns during storage. Shelf-life determination was based on the number of days before the production of off flavours and fungal infestation. Results: Compositing sorghum-wheat flour with snail meat powder progressively improved the density, baking loss, yield, weight and texture of the buns. Protein, fat, ash, energy, iron, zinc, calcium, magnesium and copper contents were also increased. Fortification of buns at 5% and 25% with SMP improved in vitro protein digestibility by 16% and 22%, respectively. Maximum bacterial count in buns was below the International Microbiological Standard recommended units for dry and ready to eat foods of 103 cfu/g. Conclusion: Buns composited with snail meat powder showed a considerable potential to be used as protein rich foods in preventing protein energy malnutrition among young children.


Sign in / Sign up

Export Citation Format

Share Document