An a priori interior estimate for the solutions of a non-linear problem representing weak diffusion

1981 ◽  
Vol 5 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Juan Luis Vasquez
Author(s):  
Jack Weatheritt ◽  
Richard Pichler ◽  
Richard D. Sandberg ◽  
Gregory Laskowski ◽  
Vittorio Michelassi

The validity of the Boussinesq approximation in the wake behind a high-pressure turbine blade is explored. We probe the mathematical assumptions of such a relationship by employing a least-squares technique. Next, we use an evolutionary algorithm to modify the anisotropy tensor a priori using highly resolved LES data. In the latter case we build a non-linear stress-strain relationship. Results show that the standard eddy-viscosity assumption underpredicts turbulent diffusion and is theoretically invalid. By increasing the coefficient of the linear term, the farwake prediction shows minor improvement. By using additional non-linear terms in the stress-strain coupling relationship, created by the evolutionary algorithm, the near-wake can also be improved upon. Terms created by the algorithm are scrutinized and the discussion is closed by suggesting a tentative non-linear expression for the Reynolds stress, suitable for the wake behind a high-pressure turbine blade.


2017 ◽  
Vol 24 (3) ◽  
pp. 543-551 ◽  
Author(s):  
Vladimir Y. Zaitsev ◽  
Andrey V. Radostin ◽  
Elena Pasternak ◽  
Arcady Dyskin

Abstract. Results of examination of experimental data on non-linear elasticity of rocks using experimentally determined pressure dependences of P- and S-wave velocities from various literature sources are presented. Overall, over 90 rock samples are considered. Interpretation of the data is performed using an effective-medium description in which cracks are considered as compliant defects with explicitly introduced shear and normal compliances without specifying a particular crack model with an a priori given ratio of the compliances. Comparison with the experimental data indicated abundance (∼ 80 %) of cracks with the normal-to-shear compliance ratios that significantly exceed the values typical of conventionally used crack models (such as penny-shaped cuts or thin ellipsoidal cracks). Correspondingly, rocks with such cracks demonstrate a strongly decreased Poisson ratio including a significant (∼ 45 %) portion of rocks exhibiting negative Poisson ratios at lower pressures, for which the concentration of not yet closed cracks is maximal. The obtained results indicate the necessity for further development of crack models to account for the revealed numerous examples of cracks with strong domination of normal compliance. Discovering such a significant number of naturally auxetic rocks is in contrast to the conventional viewpoint that occurrence of a negative Poisson ratio is an exotic fact that is mostly discussed for artificial structures.


1966 ◽  
Vol 17 (4) ◽  
pp. 371-394 ◽  
Author(s):  
J. Djubek

SummaryThe paper presents a solution of the non-linear problem of the deformation of slender rectangular plates which are stiffened along their edges by elastically compressible stiffeners flexible in the plane of the plate. The webplate is assumed to be simply-supported along its contour. Numerical results showing the effect of flexural and normal rigidity of stiffeners are given for a square webplate loaded by shear and compression.


Author(s):  
О. Shefer ◽  
N. Ichanska ◽  
B. Topikha ◽  
V. Shefer

The practical realization of potential opportunities of onboard radio local systems of radio local systems (OBRLS) that are currently considerably higher than their real approachable technical characteristics is one of the main tasks of modern theory and practice of electronic and telecommunication. The authors of the article proposed some specific technical offers and ways of physical realization of scientifically grounded algorithm of adaptive compensation of non linear distortions (ACNLD). The insertion of artificial main and supportive entrances into the scheme of non-linear adaptive compensators allowed using the general theory of adaptive systems for their synthesis. The practical usage of synthesized following such a principle ACNLD according to the created recommendations allows to significantly increase the indices of quality of OBRLS in the real conditions of their functioning, comparing with the already known ones. An additional advantage of proposed adaptive method of expansion of linear dynamic diapason (LDD) is an improvement of all-weather of OBRLS and increasing of probability of identification of radio local maps of locality captured in different weather conditions without any additional changeovers. Except for this, a flexible reserve for the noise immunity of OBRLS is being fulfilled that allows taking into consideration the possible improvements of means of radio electronic struggle. Synthesized ACNLD are considerably free from many drawbacks of linear determined means of expansion of dynamic diapason of radio receiving devices (RRD) and also they have simpler apparatus realization. Except, in a process of projection of ACNLD a considerably less volume of a priori information about the parameters of LDD is needed for the calculation of already known schemes of depression of non-linear distortions. The transferring functions of adaptive filters of ACNLD are quite quickly gather at the non-linear transferring function of radio device (RD) provided that an effective convergence can be seen only with the presence of the inner noises at least unless they exceed the non-linear distortions by the level.


2006 ◽  
Vol 169 (3) ◽  
pp. 1096-1107 ◽  
Author(s):  
Mustafa Ç. Pınar ◽  
Wolfgang M. Hartmann
Keyword(s):  

Author(s):  
Diego Liberati

In many fields of research, as well as in everyday life, it often turns out that one has to face a huge amount of data, without an immediate grasp of an underlying simple structure, often existing. A typical example is the growing field of bio-informatics, where new technologies, like the so-called Micro-arrays, provide thousands of gene expressions data on a single cell in a simple and fast integrated way. On the other hand, the everyday consumer is involved in a process not so different from a logical point of view, when the data associated to his fidelity badge contribute to the large data base of many customers, whose underlying consuming trends are of interest to the distribution market. After collecting so many variables (say gene expressions, or goods) for so many records (say patients, or customers), possibly with the help of wrapping or warehousing approaches, in order to mediate among different repositories, the problem arise of reconstructing a synthetic mathematical model capturing the most important relations between variables. To this purpose, two critical problems must be solved: 1 To select the most salient variables, in order to reduce the dimensionality of the problem, thus simplifying the understanding of the solution 2 To extract underlying rules implying conjunctions and/or disjunctions between such variables, in order to have a first idea of their even non linear relations, as a first step to design a representative model, whose variables will be the selected ones When the candidate variables are selected, a mathematical model of the dynamics of the underlying generating framework is still to be produced. A first hypothesis of linearity may be investigated, usually being only a very rough approximation when the values of the variables are not close to the functioning point around which the linear approximation is computed. On the other hand, to build a non linear model is far from being easy: the structure of the non linearity needs to be a priori known, which is not usually the case. A typical approach consists in exploiting a priori knowledge to define a tentative structure, and then to refine and modify it on the training subset of data, finally retaining the structure that best fits a cross-validation on the testing subset of data. The problem is even more complex when the collected data exhibit hybrid dynamics, i.e. their evolution in time is a sequence of smooth behaviors and abrupt changes.


Author(s):  
Pierre B. Labbé

The concept of primary/secondary categorization is first reviewed and generalized for its application to a non-linear oscillator subjected to a seismic load. Categorizing the seismic load requires calculating the input level associated with the oscillator ultimate capacity and comparing it to the level associated with the plastic yield. To resolve this problem, it is assumed that the non-linear oscillator behaves like a linear equivalent oscillator, with an effective stiffness (or frequency) and an effective damping. However, as it is not a priori possible to predict the equivalent stiffness and damping, a wide range of possibilities is systematically considered. The input motion is represented by its conventional response spectrum. It turns out that key parameters for categorization are i) the “effective stiffness factor” (varying from 0 for perfect damage behaviour to 1 for elastic-perfectly plastic) and the slope of the response spectrum in the vicinity of the natural frequency of the oscillator. Effective damping and spectrum sensitivity to damping play a second order role. A formula is presented that enables the calculation of the primary part of a seismically induced stress as a function of both the oscillator and input spectrum features. The formula is also presented in the form of a diagram. This paper follows-up on a similar paper presented by the author at the PVP 2017 Conference [1]. The new development introduced here is that the oscillator exhibits hardening capacity, while no hardening was assumed in [1]. It appears that the conclusions are slightly modified but the trend is very similar to the non-hardening case. Regarding piping systems, it appears that even when experiencing large plastic strains under beyond design input motions, their observed effective frequency is very close to their natural frequency, decreasing only by a few percents (experimental data from USA, Japan and India are processed). These observations lead to the conclusion that the seismic load, or the seismically induced inertial seismic strains, should basically be regarded as secondary.


Author(s):  
H H Afshari ◽  
E Taheri

An optimal control solution to the highly non-linear problem of orbit transfer mission is achieved by using a newly proposed analytical perturbation technique. The problem is classified as a two-point boundary value problem in order to optimize a performance measure in a given time. Assuming a constant thrust operating in a given length of time, it is sought to find the thrust direction history of a transfer from a given initial orbit to the largest possible orbit. The system dynamical model is stated by regarding a variable mass spacecraft moving in the variable gravitational field of the Earth, based on the two-body problem. To assess the perturbation solution fidelity, a numerical solution based on the Gauss pseudospectral method has been employed. The main novelty of this work is in applying a new analytical solution strategy that is a combination of perturbation technique and backward integration to a highly non-linear problem in the calculus of variations approach.


Sign in / Sign up

Export Citation Format

Share Document