The oxidation of CO over Ru(001) at high pressures: CO residence times and reaction mechanism

1990 ◽  
Vol 54-55 ◽  
pp. 779-786 ◽  
Author(s):  
F.M. Hoffmann ◽  
M.W. Weisel ◽  
C.H.F. Peden
2016 ◽  
Vol 6 (6) ◽  
pp. 1642-1650 ◽  
Author(s):  
Shinya Furukawa ◽  
Kengo Ehara ◽  
Takayuki Komatsu

A unique and novel reaction mechanism for the preferential oxidation of CO involving surface-OH-derived bicarbonate as an intermediate is reported.


Author(s):  
Chitralkumar V. Naik ◽  
Karthik V. Puduppakkam ◽  
Ellen Meeks

Accurate chemistry models are required to predict the combustion behavior of different fuels, such as synthetic gaseous fuels and liquid jet fuels. A detailed reaction mechanism contains chemistry for all the molecular components in the fuel or its surrogates. Validation studies that compare model predictions with the data from fundamental combustion experiments under well defined conditions. Such fundamental experiments are least affected by the effect of transport on chemistry. Therefore they are the most reliable means for determining a reaction mechanism’s predictive capabilities. Following extensive validation studies and analysis of detailed reaction mechanisms for a wide range of hydrocarbon components reported in our previously published work [1–5], we identified some common issues in the predictive nature of the mechanisms that are associated with inadequacies of the core (C0–C4) mechanism. For example predictions of laminar flame speeds and autoignition delay times for several fuels were inaccurate beyond the level of uncertainty in the data. This core mechanism is shared by all of the mechanisms for the larger hydrocarbon components. Unlike the reaction paths for larger hydrocarbon fuels, however, reaction paths for the core chemistry do not follow prescribed reaction rate-rules. In this work, we revisit our core reaction mechanism for saturated C0–C4 fuels, with the goal of improving predictions for the widest range of fundamental experiments as possible. To evaluate and validate the mechanism improvements, we performed a broad set of simulations of fundamental experiments. These experiments include measurements of ignition delay, flame speed and extinction strain rate, as well as species composition in stirred reactors, flames and flow reactors. The range of conditions covers low to high temperatures, very lean to very rich fuel-air ratios, and low to high pressures. Our core reaction mechanism contains thermochemical parameters derived from a wide variety of sources, including experimental measurements, ab initio calculations, estimation methods and systematic optimization studies. Each technique has its uncertainties and potential inaccuracies. Using a systematic approach that includes sensitivity analysis, reaction-path analysis, consideration of recent literature studies, and an attention to data consistency, we have identified key updates required for the core mechanism. These updates resulted in accurate predictions for various saturated fuels when compared to the data over a broad range of conditions. All reaction rate constants and species thermodynamics and transport parameters remain within known uncertainties and within physically reasonable bounds. Unlike most mechanisms in the literature, the mechanism developed in this work is self-consistent and contains chemistry of all saturated C0–C4 fuels.


2019 ◽  
Vol 204 ◽  
pp. 162-175 ◽  
Author(s):  
Ekenechukwu Chijioke Okafor ◽  
Yuji Naito ◽  
Sophie Colson ◽  
Akinori Ichikawa ◽  
Taku Kudo ◽  
...  

Author(s):  
Chitralkumar V. Naik ◽  
Karthik V. Puduppakkam ◽  
Ellen Meeks

Accurate chemistry models are required to predict the combustion behavior of different fuels, such as synthetic gaseous fuels and liquid jet fuels. A detailed reaction mechanism contains chemistry for all the molecular components in the fuel or its surrogates. Validation studies that compare model predictions with the data from fundamental combustion experiments under well-defined conditions are least affected by the effect of transport on chemistry. Therefore they are the most reliable means for determining a reaction mechanism’s predictive capabilities. Following extensive validation studies and analysis of detailed reaction mechanisms for a wide range of hydrocarbon components reported in our previously published work (Puduppakkam et al., 2010, “Validation Studies of a Master Kinetic Mechanism for Diesel and Gasoline Surrogate Fuels,” SAE Technical Paper No. 2010-01-0545; Naik et al., 2010, “Validated F-T Fuel Surrogate Model for Simulation of Jet-Engine Combustion,” Proc. ASME Turbo Expo, Paper No. GT2010-23709; Naik et al., 2010, “Applying Detailed Kinetics to Realistic Engine Simulation: The Surrogate Blend Optimizer and Mechanism Reduction Strategies,” SAE J. Engines 3(1), pp. 241–259; Naik et al., 2010, “Modeling the Detailed Chemical Kinetics of Mutual Sensitization in the Oxidation of a Model Fuel for Gasoline and Nitric Oxide,” SAE J. Fuels Lubr. 3(1), pp. 556–566; and Puduppakkam et al., 2009, “Combustion and Emissions Modeling of an HCCI Engine Using Model Fuels,” SAE Technical Paper No. 2009-01-0669), we identified some common issues in the predictive nature of the mechanisms that are associated with inadequacies of the core (C0-C4) mechanism, such as inaccurate predictions of laminar flame speeds and autoignition delay times for several fuels. This core mechanism is shared by all of the mechanisms for the larger hydrocarbon components. Unlike the reaction paths for larger hydrocarbon fuels; however, reaction paths for the core chemistry do not follow prescribed reaction rate-rules. In this work, we revisit our core reaction mechanism for saturated fuels, with the goal of improving predictions for the widest range of fundamental experiments. To evaluate and validate the mechanism improvements, we performed a broad set of simulations of fundamental experiments. These experiments include measurements of ignition delay, flame speed and extinction strain rate, as well as species composition in stirred reactors, flames and flow reactors. The range of conditions covers low to high temperatures, very lean to very rich fuel-air ratios, and low to high pressures. Our core reaction mechanism contains thermochemical parameters derived from a wide variety of sources, including experimental measurements, ab initio calculations, estimation methods and systematic optimization studies. Each technique has its uncertainties and potential inaccuracies. Using a systematic approach that includes sensitivity analysis, reaction-path analysis, consideration of recent literature studies, and an attention to data consistency, we have identified key updates required for the core mechanism. These updates resulted in accurate predictions for various saturated fuels when compared to the data over a broad range of conditions. All reaction rate constants and species thermodynamics and transport parameters remain within known uncertainties and within physically reasonable bounds. Unlike most mechanisms in the literature, the mechanism developed in this work is self-consistent and contains chemistry of all saturated fuels.


1980 ◽  
Vol 58 (5) ◽  
pp. 479-484 ◽  
Author(s):  
José M. Pazos ◽  
Paulino Andréu

The hydrodesulphurization mechanism of thiophene and tetrahydrothiophene has been developed at high pressures and over a broad range of temperature and contact time on a commercial CoMo—Al2O3 catalyst. The influence of the pretreatment on the catalyst activity and stability was also studied. The pretreatment with a mixture of H2 and H2S was found to be the most convenient. It was found that the sulphur uptake of the fresh catalyst increases with temperature and that an excess of sulphur in the catalyst leads to an initial higher activity.The thiophene reaction seems to occur simultaneously by two pathways: one consists of ring opening, and the second is yielding tetrahydrothiophene. The latter is the slowest step. The tetrahydrothiophene reacts faster than the thiophene and its reaction mechanism involves mainly the rupture of the C—S bond. However, thiophene was detected in small concentrations, showing the contribution of a second route for the tetrahydrothiophene hydrodesulphurization. Experiments carried out with benzene seem to indicate the existence of three different kinds of active sites in the catalyst: desulphurization, aromatics hydrogenation, and olefin saturation sites.On a élaboré le mécanisme d'hydrodésulfurisation du thiophène et du tétrahydrothiophène à haute pression et sur une large échelle de température et de temps de contact avec une catalyseur commercial mixte: CoMo—Al2O3. On a également étudié la stabilité ainsi que l'influence d'un traitement préalable sur l'activité du catalyseur. On a trouvé que le traitement préalable, par un mélange de H2 et de H2S, est celui qui convient le mieux. On a constaté que la fixation de soufre sur le catalyseur frais augmente avec la température et que l'excès de soufre sur le catalyseur conduit à une activité initiale plus forte.


2021 ◽  
Vol 419 ◽  
pp. 129994
Author(s):  
Zhicheng Xu ◽  
Yuran Li ◽  
Yuting Lin ◽  
Yan Wang ◽  
Qiang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document