Tree-level unitarity violation for large Higgs mass in a supersymmetric extension of the standard model

1987 ◽  
Vol 191 (4) ◽  
pp. 409-415 ◽  
Author(s):  
R. Casalbuoni ◽  
D. Dominici ◽  
F. Feruglio ◽  
R. Gatto
1996 ◽  
Vol 11 (08) ◽  
pp. 675-686 ◽  
Author(s):  
DEBRUPA CHAKRAVERTY ◽  
ANIRBAN KUNDU

The scalar sector of the standard model is extended to include an arbitrary assortment of scalars. In the case where this assignment does not preserve p=1 at the tree-level, the departure from unity itself puts the most stringent constraint on the scalar sector, and where ptree=1 is maintained, useful bounds on the parameter space of the charged Higgs mass and the doublet-nondoublet mixing angle can arise from data on [Formula: see text], [Formula: see text] mixing and the ε parameter. These constraints turn out to be comparable (and in some cases, better) to those obtained from [Formula: see text] data.


1999 ◽  
Vol 14 (35) ◽  
pp. 2447-2452
Author(s):  
B. B. DEO ◽  
L. P. SINGH

The 12 bosonic degrees of freedom of the standard model (SM) are exactly matched by fermionic degrees of freedom of a single colored quark, e.g. top. Indeed, we construct a charge involving top-quark, gauge and Higgs fields which satisfy usual supersymmetry algebra. The colored quark states behave like the superpartners of gauge and Higgs bosons and vice versa. When this SUSY is broken, a mass relation must be satisfied at the tree level from which the mass of the Higgs is predicted to be 300.5±11 GeV.


1990 ◽  
Vol 05 (16) ◽  
pp. 1259-1264 ◽  
Author(s):  
JORGE L. LOPEZ ◽  
D.V. NANOPOULOS

We examine the Higgs sector of the minimal supersymmetric extension of the standard model. The requirement of perturbative unification combined with the recent LEP data on Higgs boson searches, excludes substantial regions of parameter space. We find that only 0.42 ≤ tan β≲0.76 and tan β≳1.30 are the allowed values for tan β=υ2/υ1. We also determine the absolute lower bound on the lightest Higgs mass to be ≈8 GeV. We conclude that improved lower bounds on the top quark mass and/or the standard model Higgs boson mass will impose yet more stringent constraints on the model. These results clearly favor tan β>1, in agreement with N=1 supergravity or superstring-inspired models.


2000 ◽  
Vol 15 (26) ◽  
pp. 1605-1610 ◽  
Author(s):  
J. PASUPATHY

The assumption that the ratio of the Higgs self-coupling to the square of its Yukawa coupling to the top is (almost) independent of the renormalization scale fixes the Higgs mass within narrow limits at m H =160 GeV using only the values of gauge couplings and top mass.


2005 ◽  
Vol 20 (36) ◽  
pp. 2767-2774 ◽  
Author(s):  
ERNEST MA

If a family symmetry exists for the quarks and leptons, the Higgs sector is expected to be enlarged to be able to support the transformation properties of this symmetry. There are, however, three possible generic ways (at tree level) of hiding this symmetry in the context of the Standard Model with just one Higgs doublet. All three mechanisms have their natural realizations in the unification symmetry E6 and one in SO (10). An interesting example based on SO (10)×A4 for the neutrino mass matrix is discussed.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Priyotosh Bandyopadhyay ◽  
Saunak Dutta ◽  
Anirban Karan

AbstractThough various extensions of the Standard Model with higher gauge group predict the existence of leptoquarks, none of them has been observed yet at any of the colliders. In this paper, we study the prospect of several past and future $$e$$ e -$$p$$ p colliders like HERA, LHeC and FCC-he to detect them through radiation amplitude zero. We find that the leptoquarks showing zeros in the tree-level single-photon amplitudes at $$e$$ e -$$p$$ p collider lie within the complementary set of those exhibiting zeros at e-$$\gamma $$ γ collider. We present a PYTHIA-based analysis for HERA, LHeC and FCC-he (run II) to detect the leptoquarks with masses 70 GeV, 900 GeV and 1.5 TeV (2.0 TeV) respectively through radiation amplitude zero.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Isabell Engeln ◽  
Pedro Ferreira ◽  
M. Margarete Mühlleitner ◽  
Rui Santos ◽  
Jonas Wittbrodt

Abstract We discuss the dark phases of the Next-to-2-Higgs Doublet model. The model is an extension of the Standard Model with an extra doublet and an extra singlet that has four distinct CP-conserving phases, three of which provide dark matter candidates. We discuss in detail the vacuum structure of the different phases and the issue of stability at tree-level of each phase. Taking into account the most relevant experimental and theoretical constraints, we found that there are combinations of measurements at the Large Hadron Collider that could single out a specific phase. The measurement of h125 → γγ together with the discovery of a new scalar with specific rates to τ+τ− or γγ could exclude some phases and point to a specific phase.


2000 ◽  
Vol 15 (16) ◽  
pp. 2605-2611 ◽  
Author(s):  
TOMOMI OHGAKI

We demonstrate a measurement of the Higgs boson mass by the method of energy scanning at photon–photon colliders, using the high energy edge of the photon spectrum. With an integrated luminosity of 50 fb-1 it is possible to measure the standard model Higgs mass to within 110 MeV in photon–photon collisions for mh=100 GeV. As for the total width of the Higgs boson, the statistical error ΔΓh/Γh SM=0.06 is expected for mh=100 GeV, if both Γ(h→γγ) and [Formula: see text] are fixed at the predicted standard model value.


Sign in / Sign up

Export Citation Format

Share Document