Unified molecular theories of linear and non-linear viscoelasticity of flexible linear polymers—explaining the 3.4 power law of the zero-shear viscosity and the slip-stick melt fracture phenomenon

1987 ◽  
Vol 23 ◽  
pp. 163-187 ◽  
Author(s):  
Y.-H. Lin
Author(s):  
Gregor Plohl ◽  
Günter Brenn

The oscillating drop method allows material properties of liquids to be measured from damped drop oscillations. Theliterature discusses, e.g., the measurement of the liquid dynamic viscosity and the surface tension against the ambient medium, predominantly for Newtonian liquids. We use this method for measuring pairs of material properties of polymeric liquids. Pairs of properties may be measured, since the quantity measured is a complex frequency with a real and an imaginary part. For the measurements, individual drops are levitated in air by an ultrasonic levitator and imaged with a high-speed camera. Amplitude modulation of the ultrasound drives shape oscillations of the levitated drop. When the modulation is switched off, with the levitating force maintained, the drop performs free oscillations which are damped due to the liquid viscosity. The data acquired from the images recorded are the angular frequency and the damping rate which are used as an input into the characteristic equation of the oscillating drop. Our measurements intend to yield either two viscoelastic time scales with the zero-shear viscosity known, or one time scale and the zero-shear viscosity, with the other time scale known. The two time scales are the stress relaxation and the deformation retardation times. The latter is difficult to get for polymer solutions.The present contribution presents results from a large set of measurements of the deformation retardation time. Liquids studied are aqueous solutions of poly(acryl-amides) at varying concentration. The corresponding values of the zero-shear viscosity agree well with the values from shear rheometry. Values of the deformation retardation time differ substantially from the values commonly used in viscoelastic flow simulations. Furthermore, the measured values disagree with the predictions from the viscous-elastic stress splitting approach in linear viscoelasticity. With our study we will provide a consistent set of material properties for the Oldroyd-B model in linear viscoelasticity. This will beimportant for material modelling in viscoelastic spray simulations.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4686


1992 ◽  
Vol 24 (9) ◽  
pp. 987-990 ◽  
Author(s):  
Yoshiaki Takahashi ◽  
Daisuke Sakakura ◽  
Michio Wakutsu ◽  
Masayoshi Yamaguchi ◽  
Ichiro Noda

1988 ◽  
Vol 61 (5) ◽  
pp. 812-827 ◽  
Author(s):  
Ramesh R. Rahalkar ◽  
Henry Tang

Abstract Based upon the Doi-Edwards theory, a simple expression has been obtained for zero-shear viscosity in terms of the plateau modulus and the crossover frequency. There are no adjustable parameters in the expression. The model is in very good agreement with the zero-shear viscosity values for linear polybutadienes, the typical discrepancy being ∼5–10%. If the model can be validated for other linear amorphous polymers, it may become possible to estimate the zero-shear viscosity by measuring a single Theological parameter (the crossover frequency).


Cellulose ◽  
2021 ◽  
Author(s):  
Aayush Kumar Jaiswal ◽  
Vinay Kumar ◽  
Alexey Khakalo ◽  
Panu Lahtinen ◽  
Katariina Solin ◽  
...  

AbstractHigh-consistency processing of fibrillated cellulose materials is attractive for commercial applications due to potential for lowered production costs, energy savings and easier logistics. The current work investigated structure–property relationships of fibrillated cellulose suspensions produced at 20% consistency using VTT HefCel (High-consistency enzymatic fibrillation of cellulose) technology. Morphological examination of the fibrillated materials revealed that enzymatic action on the cellulose substrates was not a direct function of enzyme dosage but rather was dependent on the raw material composition. Furthermore, shear viscosity of the HefCel suspensions was found to decrease with increasing enzyme dosage while the water retention increased. The shear viscosity followed power law relationship with the power law index varying in the range 0.11–0.73. The shear-thinning behavior decreased with increasing consistency. Moreover, suspension viscosity ($$\upmu$$ μ ) was found to be highly dependent on the consistency ($$\mathrm{c})$$ c ) as $$\upmu \sim {\mathrm{c}}^{\mathrm{m}}$$ μ ∼ c m , with $$\mathrm{m}$$ m ranging from 2.75 to 4.31 for different samples. Yield stress (τy) of the HefCel suspensions was measured at 7 and 10% consistencies. The performance of the fibrillated cellulose grades in a typical application was demonstrated by casting films, which were characterized for their mechanical properties. Graphic abstract


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3073
Author(s):  
Abbas Mukhtar Adnan ◽  
Chaofeng Lü ◽  
Xue Luo ◽  
Jinchang Wang

This study has investigated the impact of graphene oxide (GO) in enhancing the performance properties of an asphalt binder. The control asphalt binder (60/70 PEN) was blended with GO in contents of 0%, 0.5%, 1%, 1.5%, 2%, and 2.5%. The permanent deformation behavior of the modified asphalt binders was evaluated based on the zero shear viscosity (ZSV) parameter through a steady shear test approach. Superpave fatigue test and the linear amplitude sweep (LAS) method were used to evaluate the fatigue behavior of the binders. A bending beam rheometer (BBR) test was conducted to evaluate the low-temperature cracking behavior. Furthermore, the storage stability of the binders was investigated using a separation test. The results of the ZSV test showed that GO considerably enhanced the steady shear viscosity and ZSV value, showing a significant contribution of the GO to the deformation resistance; moreover, GO modification changed the asphalt binder’s behavior from Newtonian to shear-thinning flow. A notable improvement in fatigue life was observed with the addition of GO to the binder based on the LAS test results and Superpave fatigue parameter. The BBR test results revealed that compared to the control asphalt, the GO-modified binders showed lower creep stiffness (S) and higher creep rate (m-value), indicating increased cracking resistance at low temperatures. Finally, the GO-modified asphalt binders exhibited good storage stability under high temperatures.


1980 ◽  
Vol 25 (92) ◽  
pp. 229-246 ◽  
Author(s):  
L. W. Morland ◽  
I. R. Johnson

AbstractSteady plane flow under gravity of a symmetric ice sheet resting on a horizontal rigid bed, subject to surface accumulation and ablation, basal drainage, and basal sliding according to a shear-traction-velocity power law, is treated. The surface accumulation is taken to depend on height, and the drainage and sliding coefficient also depend on the height of overlying ice. The ice is described as a general non-linearly viscous incompressible fluid, with illustrations presented for Glen’s power law, the polynomial law of Colbeck and Evans, and a Newtonian fluid. Uniform temperature is assumed so that effects of a realistic temperature distribution on the ice response are not taken into account. In dimensionless variables a small paramter ν occurs, but the ν = 0 solution corresponds to an unbounded sheet of uniform depth. To obtain a bounded sheet, a horizontal coordinate scaling by a small factor ε(ν) is required, so that the aspect ratio ε of a steady ice sheet is determined by the ice properties, accumulation magnitude, and the magnitude of the central thickness. A perturbation expansion in ε gives simple leading-order terms for the stress and velocity components, and generates a first order non-linear differential equation for the free-surface slope, which is then integrated to determine the profile. The non-linear differential equation can be solved explicitly for a linear sliding law in the Newtonian case. For the general law it is shown that the leading-order approximation is valid both at the margin and in the central zone provided that the power and coefficient in the sliding law satisfy certain restrictions.


Sign in / Sign up

Export Citation Format

Share Document