Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. Construction of broad-host-range, controlled-expression vectors

Gene ◽  
1983 ◽  
Vol 26 (2-3) ◽  
pp. 273-282 ◽  
Author(s):  
Miroslawa M. Bagdasarian ◽  
Egon Amann ◽  
Rudolf Lurz ◽  
Beate Rückert ◽  
Michael Bagdasarian
2012 ◽  
Vol 161 (2) ◽  
pp. 71-79 ◽  
Author(s):  
Sonja Christina Troeschel ◽  
Stephan Thies ◽  
Olga Link ◽  
Catherine Isabell Real ◽  
Katja Knops ◽  
...  

2018 ◽  
Author(s):  
Vanesa Amarelle ◽  
Ananda Sanches-Medeiros ◽  
Rafael Silva-Rocha ◽  
María-Eugenia Guazzaroni

AbstractAs the field of synthetic biology moves towards the utilization of novel bacterial chassis, there is a growing need for biological parts with enhanced performance in a wide number of hosts. Is not unusual that biological parts (such as promoters and terminators), initially characterized in the model bacteria Escherichia coli, do not perform well when implemented in alternative hosts, such as Pseudomonas, therefore limiting the construction of synthetic circuits in industrially relevant bacteria. In order to address this limitation, we present here the mining of transcriptional terminators through functional metagenomics to identify novel parts with broad host-range activity. Using a GFP-based terminator trap strategy and a broad host-range plasmid, we identified 20 clones with potential terminator activity in Pseudomonas putida. Further characterization allowed the identification of 4 unique sequences between 58 bp and 181 bp long that efficiently terminates transcription in P. putida, E. coli, Burkholderia phymatum and two Pseudomonas strains isolated from Antarctica. Therefore, this work presents a new set of biological parts useful for the engineering of synthetic circuits in Proteobacteria.


Plasmid ◽  
1987 ◽  
Vol 17 (3) ◽  
pp. 222-232 ◽  
Author(s):  
Michael Pinkney ◽  
Bimal D.M. Theophilus ◽  
Simon R. Warne ◽  
William C.A. Tacon ◽  
Christopher M. Thomas

2005 ◽  
Vol 156 (2) ◽  
pp. 245-255 ◽  
Author(s):  
Gaëlle Demarre ◽  
Anne-Marie Guérout ◽  
Chiho Matsumoto-Mashimo ◽  
Dean A. Rowe-Magnus ◽  
Philippe Marlière ◽  
...  

2008 ◽  
Vol 74 (16) ◽  
pp. 5053-5062 ◽  
Author(s):  
Sharik R. Khan ◽  
Jennifer Gaines ◽  
R. Martin Roop ◽  
Stephen K. Farrand

ABSTRACT Experiments requiring strong repression and precise control of cloned genes can be difficult to conduct because of the relatively high basal level of expression of currently employed promoters. We report the construction of a family of vectors that contain a reengineered lacI q-lac promoter-operator complex in which cloned genes are strongly repressed in the absence of inducer. The vectors, all based on the broad-host-range plasmid pBBR1, are mobilizable and stably replicate at moderate copy number in representatives of the alpha- and gammaproteobacteria. Each vector contains a versatile multiple cloning site that includes an NdeI site allowing fusion of the cloned gene to the initiation codon of lacZα. In each tested bacterium, a uidA reporter fused to the promoter was not expressed at a detectable level in the absence of induction but was inducible by 10- to 100-fold, depending on the bacterium. The degree of induction was controllable by varying the concentration of inducer. When the vector was tested in Agrobacterium tumefaciens, a cloned copy of the traR gene, the product of which is needed at only a few copies per cell, did not confer activity under noninducing conditions. We used this attribute of very tight and variably regulatable control to assess the relative amounts of TraR required to activate the Ti plasmid conjugative transfer system. We identified levels of induction that gave wild-type transfer frequencies, as well as levels that induced correspondingly lower frequencies of transfer. We also used this system to show that the antiactivator TraM sets the level of intracellular TraR required for tra gene activation.


Sign in / Sign up

Export Citation Format

Share Document