multiple cloning site
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 4)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fan Chen ◽  
Yi-ya Li ◽  
Yan-li Yu ◽  
Jie Dai ◽  
Jin-ling Huang ◽  
...  

Abstract Background The ability to clone DNA sequences quickly and precisely into plasmids is essential for molecular biology studies. The recent development of seamless cloning technologies has made significant improvements in plasmid construction, but simple and reliable tools are always desirable for time- and labor-saving purposes. Results We developed and standardized a plasmid cloning protocol based on a universal MCS (Multiple Cloning Site) design and bacterial in vivo assembly. With this method, the vector is linearized first by PCR (Polymerase Chain Reaction) or restriction digestion. Then a small amount (10 ~ 20 ng) of this linear vector can be mixed with a PCR-amplified insert (5× molar ratio against vector) and transformed directly into competent E. coli cells to obtain the desired clones through in vivo assembly. Since we used a 36-bp universal MCS as the homologous linker, any PCR-amplified insert with ~ 15 bp compatible termini can be cloned into the vector with high fidelity and efficiency. Thus, the need for redesigning insert-amplifying primers according to various vector sequences and the following PCR procedures was eliminated. Conclusions Our protocol significantly reduced hands-on time for preparing transformation reactions, had excellent reliability, and was confirmed to be a rapid and versatile plasmid cloning technique. The protocol contains mostly mixing steps, making it an extremely automation-friendly and promising tool in modern biology studies.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Kensuke Shima ◽  
Mary M. Weber ◽  
Christiane Schnee ◽  
Konrad Sachse ◽  
Nadja Käding ◽  
...  

ABSTRACT The obligate intracellular bacterium Chlamydia psittaci is a known avian pathogen causing psittacosis in birds and is capable of zoonotic transmission. In human pulmonary infections, C. psittaci can cause pneumonia associated with significant mortality if inadequately diagnosed and treated. Although intracellular C. psittaci manipulates host cell organelles for its replication and survival, it has been difficult to demonstrate host-pathogen interactions in C. psittaci infection due to the lack of easy-to-handle genetic manipulation tools. Here, we show the genetic transformation of C. psittaci using a plasmid shuttle vector that contains a controllable gene induction system. The 7,553-bp plasmid p01DC12 was prepared from the nonavian C. psittaci strain 01DC12. We constructed the shuttle vector pCps-Tet-mCherry using the full sequence of p01DC12 and the 4,449-bp fragment of Chlamydia trachomatis shuttle vector pBOMB4-Tet-mCherry. pCps-Tet-mCherry includes genes encoding the green fluorescent protein (GFP), mCherry, and ampicillin resistance (AmpR). Target genes can be inserted at a multiple cloning site (MCS). Importantly, these genes can be regulated by a tetracycline-inducible (tet) promoter. Using the pCps-Tet-mCherry plasmid shuttle vector, we show the expression of GFP, as well as the induction of mCherry expression, in C. psittaci strain 02DC15, which belongs to the avian C. psittaci 6BC clade. Furthermore, we demonstrated that pCps-Tet-mCherry was stably retained in C. psittaci transformants. Thus, our C. psittaci plasmid shuttle vector system represents a novel targeted approach that enables the elucidation of host-pathogen interactions. IMPORTANCE Psittacosis, caused by avian C. psittaci, has a major economic impact in the poultry industry worldwide and represents a significant risk for zoonotic transmission to humans. In the past decade, the tools of genetic manipulation have been improved for chlamydial molecular studies. While several genetic tools have been mainly developed in Chlamydia trachomatis, a stable gene-inducible shuttle vector system has not to date been available for C. psittaci. In this study, we adapted a C. trachomatis plasmid shuttle vector system to C. psittaci. We constructed a C. psittaci plasmid backbone shuttle vector called pCps-Tet-mCherry. The construct expresses GFP in C. psittaci. Importantly, exogeneous genes can be inserted at an MCS and are regulated by a tet promoter. The application of the pCps-Tet-mCherry shuttle vector system enables a promising new approach to investigate unknown gene functions of this pathogen.


BioTechniques ◽  
2019 ◽  
Vol 66 (6) ◽  
pp. 254-259 ◽  
Author(s):  
Jens Staal ◽  
Kübra Alci ◽  
Wouter De Schamphelaire ◽  
Martine Vanhoucke ◽  
Rudi Beyaert

Author(s):  
Jens Staal ◽  
Wouter De Schamphelaire ◽  
Rudi Beyaert

Minimal plasmids play an essential role in many intermediate steps in molecular biology. They can for example be used to assemble building blocks in synthetic biology or be used as intermediate cloning plasmids that are ideal for PCR-based mutagenesis methods. A small backbone also opens up for additional unique restriction enzyme cloning sites. Here we describe the generation of pICOz, a 1185 bp fully functional high-copy cloning plasmid with an extended multiple cloning site (MCS). To our knowledge, this is the smallest high-copy cloning vector ever described.


Author(s):  
Jens Staal ◽  
Wouter De Schamphelaire ◽  
Rudi Beyaert

Minimal plasmids play an essential role in many intermediate steps in molecular biology. They can for example be used to assemble building blocks in synthetic biology or be used as intermediate cloning plasmids that are ideal for PCR-based mutagenesis methods. A small backbone also opens up for additional unique restriction enzyme cloning sites. Here we describe the generation of a ~1kb fully functional cloning plasmid with an extended multiple cloning site (MCS). To our knowledge, this is the smallest high-copy cloning vector ever described.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2351 ◽  
Author(s):  
Michael Mülleder ◽  
Kate Campbell ◽  
Olga Matsarskaia ◽  
Florian Eckerstorfer ◽  
Markus Ralser

Auxotrophic markers are useful tools in cloning and genome editing, enable a large spectrum of genetic techniques, as well as facilitate the study of metabolite exchange interactions in microbial communities. If unused background auxotrophies are left uncomplemented however, yeast cells need to be grown in nutrient supplemented or rich growth media compositions, which precludes the analysis of biosynthetic metabolism, and which leads to a profound impact on physiology and gene expression. Here we present a series of 23 centromeric plasmids designed to restore prototrophy in typicalSaccharomyces cerevisiaelaboratory strains. The 23 single-copy plasmids complement for deficiencies inHIS3, LEU2, URA3, MET17 or LYS2genes and in their combinations, to match the auxotrophic background of the popular functional-genomic yeast libraries that are based on the S288c strain. The plasmids are further suitable for designing self-establishing metabolically cooperating (SeMeCo) communities, and possess a uniform multiple cloning site to exploit multiple parallel selection markers in protein expression experiments.


2016 ◽  
Author(s):  
SA. Bhuiyan ◽  
DJ. Vanitha ◽  
H. Sultana ◽  
F. Opook ◽  
KF. Rodrigues

ABSTRACTProteins associated with the bacterial membrane can be recruited for application as antigens for the development of vaccines. This preliminary study was directed towards evaluating the antigenic properties of the Pseudomonas aeruginosa (PA01) pscC protein which is a component of the Type III secretion system. Gene specific primers were designed to isolate the pscC gene which was isolated, ligated onto the multiple cloning site of vector pGS21(a), cloned and expressed in Escherichia coli (BL21). The molecular weight of the expressed pscC protein was determined by SDS-PAGE (10% sodium dodecyl sulphate-polyacrylamide gel electrophoresis) and was found to be around 57 KDa and purified by the size exclusion chromatography. Finally, the purified pscC protein was injected subcutaneously into adult Sprague Dawley® rats with a range of concentrations (50, 100 and 150 µg per rat) respectively. Recombinant pscC antigen induced a specific humoral immune response against the antigen, which was validated by Enzyme-linked immunosorbent assay (ELISA). The results concluded that anti-pscC antibody was elicited in the animal model.


2015 ◽  
Vol 81 (9) ◽  
pp. 3243-3254 ◽  
Author(s):  
Sybille Schwendener ◽  
Vincent Perreten

ABSTRACTFourStaphylococcus aureus-Escherichia colishuttle vectors were constructed for gene expression and production of tagged fusion proteins. Vectors pBUS1-HC and pTSSCm have no promoter upstream of the multiple cloning site (MCS), and this allows study of genes under the control of their native promoters, and pBUS1-Pcap-HC and pTSSCm-Pcapcontain the strong constitutive promoter ofS. aureustype 1 capsule gene 1A (Pcap) upstream of a novel MCS harboring codons for the peptide tag Arg-Gly-Ser-hexa-His (rgs-his6). All plasmids contained the backbone derived from pBUS1, including theE. coliorigin ColE1, five copies of terminatorrrnBT1, and tetracycline resistance markertet(L) forS. aureusandE. coli. The minimum pAMα1 replicon from pBUS1 was improved through either complementation with the single-strand originoriLfrom pUB110 (pBUS1-HC and pBUS1-Pcap-HC) or substitution with a pT181-family replicon (pTSSCm and pTSSCm-Pcap). The new constructs displayed increased plasmid yield and segregational stability inS. aureus. Furthermore, pBUS1-Pcap-HC and pTSSCm-Pcapoffer the potential to generate C-terminal RGS-His6translational fusions of cloned genes using simple molecular manipulation. BcgI-induced DNA excision followed by religation converts the TGA stop codon of the MCS into a TGC codon and links thergs-his6codons to the 3′ end of the target gene. The generation of thergs-his6codon-fusion, gene expression, and protein purification were demonstrated in bothS. aureusandE. coliusing the macrolide-lincosamide-streptogramin B resistance geneerm(44) inserted downstream of Pcap. The new His tag expression system represents a helpful tool for the direct analysis of target gene function in staphylococcal cells.


2014 ◽  
Vol 81 (3) ◽  
pp. 1038-1046 ◽  
Author(s):  
Irene N. Kasumba ◽  
Aaron Bestor ◽  
Kit Tilly ◽  
Patricia A. Rosa

ABSTRACTTargeted mutagenesis and complementation are important tools for studying genes of unknown function in the Lyme disease spirocheteBorrelia burgdorferi. A standard method of complementation is reintroduction of a wild-type copy of the targeted gene on a shuttle vector. However, shuttle vectors are present at higher copy numbers thanB. burgdorferiplasmids and are potentially unstable in the absence of selection, thereby complicating analyses in the mouse-tick infectious cycle.B. burgdorferihas over 20 plasmids, with some, such as linear plasmid 25 (lp25), carrying genes required by the spirochetein vivobut relatively unstable duringin vitrocultivation. We propose that complementation on an endogenous plasmid such as lp25 would overcome the copy number andin vivostability issues of shuttle vectors. In addition, insertion of a selectable marker on lp25 could ensure its stable maintenance by spirochetes in culture. Here, we describe the construction of a multipurpose allelic-exchange vector containing a multiple-cloning site and either of two selectable markers. This suicide vector directs insertion of the complementing gene into thebbe02locus, a site on lp25 that was previously shown to be nonessential during bothin vitroandin vivogrowth. We demonstrate the functional utility of this strategy by restoring infectivity to anospCmutant through complementation at this site on lp25 and stable maintenance of theospCgene throughout mouse infection. We conclude that this represents a convenient and widely applicable method for stable gene complementation inB. burgdorferi.


Sign in / Sign up

Export Citation Format

Share Document