Some notes on the regeneration of Norway spruce on six permanent plots managed with single-tree selection

1991 ◽  
Vol 46 (1-2) ◽  
pp. 49-57 ◽  
Author(s):  
Lars Lundqvist
Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1338
Author(s):  
Simone Bianchi ◽  
Mari Myllymaki ◽  
Jouni Siipilehto ◽  
Hannu Salminen ◽  
Jari Hynynen ◽  
...  

Background and Objectives: Continuous cover forestry is of increasing importance, but operational forest growth models are still lacking. The debate is especially open if more complex spatial approaches would provide a worthwhile increase in accuracy. Our objective was to compare a nonspatial versus a spatial approach for individual Norway spruce tree growth models under single-tree selection cutting. Materials and Methods: We calibrated nonlinear mixed models using data from a long-term experiment in Finland (20 stands with 3538 individual trees for 10,238 growth measurements). We compared the use of nonspatial versus spatial predictors to describe the competitive pressure and its release after cutting. The models were compared in terms of Akaike Information Criteria (AIC), root mean square error (RMSE), and mean absolute bias (MAB), both with the training data and after cross-validation with a leave-one-out method at stand level. Results: Even though the spatial model had a lower AIC than the nonspatial model, RMSE and MAB of the two models were similar. Both models tended to underpredict growth for the highest observed values when the tree-level random effects were not used. After cross-validation, the aggregated predictions at stand level well represented the observations in both models. For most of the predictors, the use of values based on trees’ height rather than trees’ diameter improved the fit. After single-tree selection cutting, trees had a growth boost both in the first and second five-year period after cutting, however, with different predicted intensity in the two models. Conclusions: Under the research framework here considered, the spatial modeling approach was not more accurate than the nonspatial one. Regarding the single-tree selection cutting, an intervention regime spaced no more than 15 years apart seems necessary to sustain the individual tree growth. However, the model’s fixed effect parts were not able to capture the high growth of the few fastest-growing trees, and a proper estimation of site potential is needed for uneven-aged stands.


2002 ◽  
Vol 32 (9) ◽  
pp. 1577-1584 ◽  
Author(s):  
Erkki Lähde ◽  
Olavi Laiho ◽  
Yrjö Norokorpi ◽  
Timo Saksa

The study included 23 stands (at least 2 ha each in size) distributed from southern to northern Finland. These Norway spruce (Picea abies (L.) Karst.) dominated stands grew on fertile (Oxalis–Myrtillus and Myrtillus site types) mineral soils. Each stand contained two substands randomly treated with single-tree selection or low thinning. The harvested volumes (trees > 9 cm) varied greatly but averaged 94 m3·ha–1 in the former consisting of mainly medium-sized and larger (>15 cm) trees and 68 m3·ha–1 in the latter of mainly medium-sized and smaller (<15 cm) trees. After treatment, mean diameter at breast height (DBH), basal area, and stand volume were 12–17% lower in single-tree selection than in low thinning. The stem distributions were reverse-J shaped and bell shaped, respectively. During the monitoring of a mean of 11 years, about one cutting cycle in single-tree selection, stand volume (trees > 9 cm) increased 38% in single-tree selection and 27% in low thinning. The respective current annual volume and relative increments were 5.4 (3.6%) and 4.6 m3·ha–1·year–1 (2.4%). In 18 (volume) and in 22 (relative) of the 23 plot pairs the increment was higher after single-tree selection than after low thinning (p values 0.013 and <0.001, respectively). Single-tree selection plots additionally included 1300 saplings/ha (from breast height to DBH 9 cm) after cutting, with the transition of 80 saplings/ha into larger trees and with the ingrowth, mainly spruce, of 170 seedlings/ha into saplings during monitoring.


2020 ◽  
Author(s):  
Alexander C Helman ◽  
Matthew C Kelly ◽  
Mark D Rouleau ◽  
Yvette L Dickinson

Abstract Managing northern hardwood forests using high-frequency, low-intensity regimes, such as single-tree selection, favors shade-tolerant species and can reduce tree species diversity. Management decisions among family forest owners (FFO) can collectively affect species and structural diversity within northern hardwood forests at regional scales. We surveyed FFOs in the Western Upper Peninsula of Michigan to understand likely future use of three silvicultural treatments—single-tree selection, shelterwood, and clearcut. Our results indicate that FFOs were most likely to implement single-tree selection and least likely to implement clearcut within the next 10 years. According to logistic regression, prior use of a treatment and perceived financial benefits significantly increased the odds for likely use for all three treatments. Having received professional forestry assistance increased likely use of single-tree selection but decreased likely use of shelterwood. We discuss these results within the context of species diversity among northern hardwood forests throughout the region.


2004 ◽  
Vol 34 (5) ◽  
pp. 985-997 ◽  
Author(s):  
Thomas M Schuler

Long-term silvicultural trials contribute to sustainable forest management by providing a better scientific understanding of how forest ecosystems respond to periodic timber harvesting. In this study, species composition, diversity, and net periodic growth of tree species in a mixed mesophytic forest in the central Appalachians were evaluated after about a half century of management. Three partial cutting practices on 18 research compartments and on 3 unmanaged reference compartments were evaluated (1951–2001) on 280 ha. Single-tree selection, diameter-limit harvesting, and timber harvesting in 0.162-ha patches were assessed on three northern red oak site index50 (SI) classes: 24, 21, and 18. Shannon–Weiner's diversity index (H′) declined from the first (1951–1959) to last (1987–2001) measurements and was related to both SI (P = 0.004) and treatment (P = 0.009). Sugar maple (Acer saccharum Marsh.) and red maple (Acer rubrum L.) were the two most abundant species in recent years (1987–2001); in contrast, in initial inventories (1951–1959), northern red oak (Quercus rubra L.) and chestnut oak (Quercus prinus L.) were most abundant. Net periodic annual increment (PAI) of merchantable trees (DBH ≥12.7 cm) was related to both SI (P = 0.004) and treatment (P = 0.003). Mean PAI ranged from 4.6 m3·ha–1·year–1 for single-tree selection to 2.5 m3·ha–1·year–1 for unmanaged reference areas across all SI classes. The decline of oak species suggests that only intensive and specific forest management focused on maintaining oak species can obtain historical levels of diversity.


2016 ◽  
Vol 46 (4) ◽  
pp. 499-507 ◽  
Author(s):  
Daniel M. Geleynse ◽  
Erica Nol ◽  
Dawn M. Burke ◽  
Ken A. Elliott

The Brown Creeper (Certhia americana Bonaparte, 1838) has been identified as one of the most sensitive passerines to partial forest harvest in North America. The effect of selection logging on Brown Creeper density, nest timing, nest survival, and nest and foraging site selection was examined in five silviculture treatments (intensive group selection, typical group selection, old single-tree selection, recent single-tree selection, and control forests) of Algonquin Provincial Park, Canada. As Brown Creeper nests under the bark of large, decaying trees, we hypothesized that Brown Creeper density, timing of breeding, nest survival, and nest and foraging site selection would be negatively affected by silviculture through the removal of large, decaying trees as part of providing safe conditions for loggers. We monitored 101 nests of Brown Creeper during the 2010 and 2011 breeding seasons, mapped territories to estimate density, and conducted foraging surveys. Brown Creeper density was reduced by about 42% in logged stands compared with control stands. Despite that, silviculture did not significantly alter timing of breeding or nest survival. However, the loss of large trees through partial harvesting meant that Brown Creeper nested closer to adjacent, small forested wetlands and often in balsam fir (Abies balsamea (L.) Mill.) in treated stands. In control stands, Brown Creeper nested further from forested wetlands, disproportionately in greater numbers in upland hardwoods, and preferentially in the bark of snags of yellow birch (Betula alleghaniensis Britton). The change in the species of tree used for nesting and the general forest type as a result of logging also resulted in consequences for the selection of foraging substrates. To maintain higher densities of Brown Creeper in logged stands in Algonquin Park, we recommend retaining larger diameter yellow birch, both snags and live trees, preferably within strategically located uncut reserves based on habitat supply planning, that maintains patches roughly the size of Brown Creeper territories (10 ha).


1987 ◽  
Vol 4 (4) ◽  
pp. 180-185 ◽  
Author(s):  
H. Clay Smith ◽  
Gary W. Miller

Abstract Adjacent Appalachian hardwood stands in West Virginia established on excellent growing sites were managed for a 34-year period using four regeneration practices. These practices included a commercial clearcut, 15.5-in diameter-limit, and two single-tree selection practices. An uncut area was maintained as a control. Stand development, growth response, and some stumpage revenue data were summarized for each treatment. At 34 years after the initial treatments, the commercial clearcut stand had the greatest variety of tree species for future management. This stand was dominated primarily by yellow-poplar and black locust. Selection and 15.5-in diameter-limit treatments promoted sugar maple on these excellent sites. Stand quality improved through management. After 34 years, the control area was worth $1,554/ac, and an intensively managed selection area was worth $1,214/ac, but the control area contained twice the sawtimber volume. Other preliminary value comparisons indicate that landowners benefit from some type of management compared to doing no management. North. J. Appl. For. 4:180-185, Dec. 1987.


1995 ◽  
Vol 19 (2) ◽  
pp. 84-88 ◽  
Author(s):  
Philip A. Tappe ◽  
Michael D. Cain ◽  
T. Bently Wigley ◽  
Derik J. Reed

Abstract The effects of overstory pine basal area on plant community structure and composition were assessed in uneven-aged stands of loblolly and shortleaf pines (Pinus taedaL. and P. echinata Mill.) in southern Arkansas. Basal area treatments were 40, 60, 80, and 100 ft2/ac for the merchantable pine component (>3.5 in. dbh) and were maintained on a 6 yr cutting cycle using single-tree selection. Assessments of plant communities were made 10 yr after a single hardwood control treatment. The four levels of pine basal area had no effect on percent ground cover of most plants <3 ft tall, but ground cover from graminoids decreased as pine basal area increased. Vertical cover above loft height increased 33% as overstory basal area increased from 40 to 100 ft2/ac, but basal area had no effect on horizontal cover in height zones between 0 and 10ft. It is concluded that uneven-aged stands of loblolly-shortleaf pine with merchantable basal areas of from 40 to 100 ft²/ac may support similar plant species in the understory and consequently probably provide similar habitat requirements for a variety of game and nongame wildlife. South. J. Appl. For. 19(2):84-88.


Sign in / Sign up

Export Citation Format

Share Document