Carbon dioxide balance of sunflower (Helianthus annuus) subjected to water stress during grain-filling

1989 ◽  
Vol 20 (1) ◽  
pp. 65-80 ◽  
Author(s):  
D.M. Whitfield ◽  
D.J. Connor ◽  
A.J. Hall
1980 ◽  
Vol 31 (5) ◽  
pp. 857
Author(s):  
B Marshall ◽  
RH Sedgley ◽  
PV Biscoe

An experiment was conducted on Huntsman winter wheat to investigate the effects of a water stress applied at anthesis on the carbon dioxide exchange of the ears during grain filling. The water stress was created by excluding rain from the soil, not the foliage, of plants growing in the field. Control plants were well watered throughout the period when the treatment was imposed. At intervals for 32 days after anthesis, detailed measurements were made of the photosynthetic rate of ears at different irradiances and rates of ear dark respiration. The measurements were analysed by using the photosynthesis-light response model developed by Marshall and Biscoe (1980) for wheat leaves with a modification for the pathway of respiration from the grains to the glumes. The model is a non-rectangular hyperbola and uses four parameters: Pn,max (maximum rate of net photosynthesis), Rd (rate of dark respiration), � (photochemical efficiency at low light), and F (ratio of physical to total resistance to diffusion of carbon dioxide). Analysis showed that in wheat ears during grain filling, photosynthesis can be treated as occurring predominantly in the glumes and respiration in the grains. The shape of the photosynthesis-light response curves for ears from both treatments were similar, but differed from those for wheat leaves because the maximum rates of photosynthesis were reached more gradually with increasing irradiance. However, the measured response curves were still better fitted by the model than a rectangular hyperbola which has often been used in the past. The water stress at anthesis decreased the maximum rate of ear photosynthesis by 0.8 g carbon dioxide m-2 h-1 throughout the grain-filling period. Initially, the rates of ear respiration were the same, but 32 days after anthesis the treatment had decreased ear respiration rate from 0.04 to 0.01 g carbon dioxide h-1/grain.


1980 ◽  
Vol 31 (5) ◽  
pp. 857
Author(s):  
B Marshall ◽  
RH Sedgley ◽  
PV Biscoe

An experiment was conducted on Huntsman winter wheat to investigate the effects of a water stress applied at anthesis on the carbon dioxide exchange of the ears during grain filling. The water stress was created by excluding rain from the soil, not the foliage, of plants growing in the field. Control plants were well watered throughout the period when the treatment was imposed. At intervals for 32 days after anthesis, detailed measurements were made of the photosynthetic rate of ears at different irradiances and rates of ear dark respiration. The measurements were analysed by using the photosynthesis-light response model developed by Marshall and Biscoe (1980) for wheat leaves with a modification for the pathway of respiration from the grains to the glumes. The model is a non-rectangular hyperbola and uses four parameters: Pn,max (maximum rate of net photosynthesis), Rd (rate of dark respiration), � (photochemical efficiency at low light), and F (ratio of physical to total resistance to diffusion of carbon dioxide). Analysis showed that in wheat ears during grain filling, photosynthesis can be treated as occurring predominantly in the glumes and respiration in the grains. The shape of the photosynthesis-light response curves for ears from both treatments were similar, but differed from those for wheat leaves because the maximum rates of photosynthesis were reached more gradually with increasing irradiance. However, the measured response curves were still better fitted by the model than a rectangular hyperbola which has often been used in the past. The water stress at anthesis decreased the maximum rate of ear photosynthesis by 0.8 g carbon dioxide m-2 h-1 throughout the grain-filling period. Initially, the rates of ear respiration were the same, but 32 days after anthesis the treatment had decreased ear respiration rate from 0.04 to 0.01 g carbon dioxide h-1/grain.


Helia ◽  
2004 ◽  
Vol 27 (40) ◽  
pp. 227-236 ◽  
Author(s):  
H. Turhan ◽  
I. Baser

1975 ◽  
Vol 26 (3) ◽  
pp. 497 ◽  
Author(s):  
EAN Greenwood ◽  
P Farrington ◽  
JD Beresford

The time course of development of a lupin crop was studied at Bakers Hill, Western Australia. The aim was to gain insight into the crop factors influencing yield. Weekly measurements were made of numbers and weights of plant parts, and profiles of roots, leaf area and light interception. A profile of carbon dioxide in the crop atmosphere was taken at the time of maximum leaf area, and the net carbon dioxide exchange (NCE) of pods was estimated for three successive weeks. The crop took 10 weeks to attain a leaf area index (LAI) of 1 and a further 9 weeks to reach a maximum LAI of 3.75, at which time only 33% of daylight reached the pods on the main axis. Once the maximum LAI was attained at week 19, leaf fall accelerated and rapid grain filling commenced almost simultaneously on all of the three orders of axes which had formed pods. Measurements of NCE between pods on the main axis and the air suggest that the assimilation of external carbon dioxide by the pods contributed little to grain filling. Grain dry weight was 2100 kg ha-1 of which 30%, 60% and 10% came from the main axis, first and second order apical axes respectively. Only 23% of the flowers set pods and this constitutes an important physiological limitation to grain yield.


2015 ◽  
Vol 2 (2) ◽  
pp. 117-132
Author(s):  
Maamoun Ahmed Abdel-Moneam ◽  
Sally E El-Wakeel ◽  
M. S. Sultan ◽  
A. A. Eid

This investigation was carried out at Sakha Agricultural Research Station, ARC, Egypt during the two growing seasons (2010/2011 and 2011/2012). Seven lines and three testers were used to develop barley hybrids for earliness and vegetative traits under normal and water stress conditions. Data revealed that most of the variances due to genotypes, parents, crosses, parents x crosses, lines, testers and line x testers were highly significant for most studied traits under both conditions and their combined data. The water stress treatment decreased the mean of days to heading for parents and their hybrids. The parental Line-1, Tester-1 under all conditions and top cross no. 7 under normal and combined and cross no. 1 under stress were the earliest parents and crosses for days to heading. The stressed genotypes for water, matured earlier than genotypes grown under normal condition. The ratios of GCA/SCA were lesser than unity for all studied traits under all conditions, which mean that non-additive gene effects played an important role in the inheritance of these traits. In such cases, a bulk method would be fruitful to eliminate the effect of dominance in the advanced generation. Desirable significant GCA effects were showed by Line-1 under water stress and Tester-1 under all conditions for days to heading; Tester-1 under normal and combined for days to maturity; Line-2 under stress and Line-7 under normal condition for grain filling period; Line-4, Line-6 under both conditions and combined, Line-3 under normal, Line-7 under water stress, Tester-3 under both conditions and combined data for grain filling rate; Line-4 under both conditions and their combined data, Line-7 under water stress and combined data, Tester-2 under stress and combined data for flag leaf area; and Line-3 under normal, Line-2 and Line-7 under water stress for total chlorophyll content. Moderate phenotypic and genotypic coefficients of variability were obtained for grain filling rate and total chlorophyll content, and high for flag leaf area. Small differences between genotypic and phenotypic coefficients of variability were found for all studied traits under all conditions, indicating the presence of sufficient genetic variability for these traits, which may facilitate selection. Broad sense heritability percentages ranged from moderate to high with percentages ranged from 10.82% for days to maturity at combined data to 97.30% for grain filling rate under normal condition. These results indicate that genotypic variances played the major part of phenotypic variances. Narrow sense heritability percentages varied from low to moderate with percentages ranged from 0.92 % for grain filling period at combined data to 18.92% for grain filling rate under normal condition. The expected genetic advance (Δg) ranged from 0.02 for grain filling period at combined data to 0.36 for total chlorophyll conten under normal condition. While, the estimates of predicted genetic advance (Δg %) ranged from 0.04% for grain filling period at combined data to 7.41% for grain filling rate under stress condition. Generally, traits that showed high values of narrow sense heritability and expected genetic advance from selection should be used in breeding program where selection in the early segregating generations will be useful because additive gene action is more important than non-additive genetic components.


Sign in / Sign up

Export Citation Format

Share Document