Phase diagram of the two-dimensional Lennard-Jones system; Evidence for first-order transitions

1981 ◽  
Vol 106 (1-2) ◽  
pp. 226-238 ◽  
Author(s):  
J.A. Barker ◽  
D. Henderson ◽  
F.F. Abraham
2019 ◽  
Vol 5 (5) ◽  
pp. eaav7282 ◽  
Author(s):  
Yoshitaka Kawasugi ◽  
Kazuhiro Seki ◽  
Satoshi Tajima ◽  
Jiang Pu ◽  
Taishi Takenobu ◽  
...  

A Mott insulator sometimes induces unconventional superconductivity in its neighbors when doped and/or pressurized. Because the phase diagram should be strongly related to the microscopic mechanism of the superconductivity, it is important to obtain the global phase diagram surrounding the Mott insulating state. However, the parameter available for controlling the ground state of most Mott insulating materials is one-dimensional owing to technical limitations. Here, we present a two-dimensional ground-state mapping for a Mott insulator using an organic field-effect device by simultaneously tuning the bandwidth and bandfilling. The observed phase diagram showed many unexpected features such as an abrupt first-order superconducting transition under electron doping, a recurrent insulating phase in the heavily electron-doped region, and a nearly constant superconducting transition temperature in a wide parameter range. These results are expected to contribute toward elucidating one of the standard solutions for the Mott-Hubbard model.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Barnana Pal

Cluster formation in a two-dimensional Lennard-Jones system under different conditions of temperature () and particle concentration () has been studied using the Monte-Carlo method with the introduction of real thermal motion of the constituent particles through a modification of the conventional Metropolis algorithm. The - phase diagram determined from the study of the root mean square displacement of the particles shows features characteristics of the - diagram for phase equilibrium in real systems. The solid-like to liquid-like transition takes place when the average nearest neighbour distance increases by ~1% of the equilibrium value in the low-temperature solid-like configuration. The Lindemann parameter () is found to decrease with the increase of to reach a steady value of for .


Author(s):  
L. T. Pawlicki ◽  
R. M. Siegoczyński ◽  
S. Ptasznik ◽  
K. Marszałek

AbstractThe main purpose of the experiment was a thermodynamic research with use of the electric methods chosen. The substance examined was olive oil. The paper presents the resistance, capacitive reactance, relative permittivity and resistivity of olive. Compression was applied with two mean velocities up to 450 MPa. The results were shown as functions of pressure and time and depicted on the impedance phase diagram. The three first order phase transitions have been detected. All the changes in material parameters were observed during phase transitions. The material parameters measured turned out to be the much more sensitive long-time phase transition factors than temperature. The values of material parameters and their dependence on pressure and time were compared with the molecular structure, arrangement of molecules and interactions between them. Knowledge about olive oil parameters change with pressure and its phase transitions is very important for olive oil production and conservation.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1220
Author(s):  
Arnout M. P. Boelens ◽  
Hamdi A. Tchelepi

This work studies how morphology (i.e., the shape of a structure) and topology (i.e., how different structures are connected) influence wall adsorption and capillary condensation under tight confinement. Numerical simulations based on classical density functional theory (cDFT) are run for a wide variety of geometries using both hard-sphere and Lennard-Jones fluids. These cDFT computations are compared to results obtained using the Minkowski functionals. It is found that the Minkowski functionals can provide a good description of the behavior of Lennard-Jones fluids down to small system sizes. In addition, through decomposition of the free energy, the Minkowski functionals provide a good framework to better understand what are the dominant contributions to the phase behavior of a system. Lastly, while studying the phase envelope shift as a function of the Minkowski functionals it is found that topology has a different effect depending on whether the phase transition under consideration is a continuous or a discrete (first-order) transition.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Clifford V. Johnson ◽  
Felipe Rosso

Abstract Recent work has shown that certain deformations of the scalar potential in Jackiw-Teitelboim gravity can be written as double-scaled matrix models. However, some of the deformations exhibit an apparent breakdown of unitarity in the form of a negative spectral density at disc order. We show here that the source of the problem is the presence of a multi-valued solution of the leading order matrix model string equation. While for a class of deformations we fix the problem by identifying a first order phase transition, for others we show that the theory is both perturbatively and non-perturbatively inconsistent. Aspects of the phase structure of the deformations are mapped out, using methods known to supply a non-perturbative definition of undeformed JT gravity. Some features are in qualitative agreement with a semi-classical analysis of the phase structure of two-dimensional black holes in these deformed theories.


1990 ◽  
Vol 45 (11-12) ◽  
pp. 1219-1229 ◽  
Author(s):  
D.-A. Becker ◽  
E. W. Richter

AbstractA generalization of the usual method of similarity analysis of differential equations, the method of partially invariant solutions, was introduced by Ovsiannikov. The degree of non-invariance of these solutions is characterized by the defect of invariance d. We develop an algorithm leading to partially invariant solutions of quasilinear systems of first-order partial differential equations. We apply the algorithm to the non-linear equations of the two-dimensional non-stationary ideal MHD with a magnetic field perpendicular to the plane of motion.


2007 ◽  
Vol 17 (09) ◽  
pp. 3071-3083 ◽  
Author(s):  
J. M. GONZÀLEZ-MIRANDA

The results of a study of the bifurcation diagram of the Hindmarsh–Rose neuron model in a two-dimensional parameter space are reported. This diagram shows the existence and extent of complex bifurcation structures that might be useful to understand the mechanisms used by the neurons to encode information and give rapid responses to stimulus. Moreover, the information contained in this phase diagram provides a background to develop our understanding of the dynamics of interacting neurons.


1972 ◽  
Vol 39 (3) ◽  
pp. 689-695 ◽  
Author(s):  
W. W. Recker

The two-dimensional equations of magnetoelastodynamics are considered as a symmetric hyperbolic system of linear first-order partial-differential equations in three independent variables. The characteristic properties of the system are determined and a numerical method for obtaining the solution to mixed initial and boundary-value problems in plane magnetoelastodynamics is presented. Results on the von Neumann necessary condition are presented. Application of the method to a problem which has a known solution provides further numerical evidence of the convergence and stability of the method.


Sign in / Sign up

Export Citation Format

Share Document