On the electronic structure and conduction properties of polymeric quasi-one-dimensional model superlattices: Study of Type I and Type II-staggered superlattices

1992 ◽  
Vol 11 (4) ◽  
pp. 473-493 ◽  
Author(s):  
A.K. Bakhshi
1990 ◽  
Vol 41 (6) ◽  
pp. 3641-3646 ◽  
Author(s):  
M. Holtz ◽  
R. Cingolani ◽  
K. Reimann ◽  
R. Muralidharan ◽  
K. Syassen ◽  
...  

Nano Letters ◽  
2013 ◽  
Vol 13 (12) ◽  
pp. 5880-5885 ◽  
Author(s):  
Hagai Eshet ◽  
Michael Grünwald ◽  
Eran Rabani

2003 ◽  
Vol 10 (4/5) ◽  
pp. 363-371 ◽  
Author(s):  
W. Horton ◽  
R. S. Weigel ◽  
D. Vassiliadis ◽  
I. Doxas

Abstract. The results of a genetic algorithm optimization of the WINDMI model using the Blanchard-McPherron substorm data set is presented. A key result from the large-scale computations used to search for convergence in the predictions over the database is the finding that there are three distinct types of vx Bs -AL waveforms characterizing substorms. Type I and III substorms are given by the internally-triggered WINDMI model. The analysis reveals an additional type of event, called a type II substorm, that requires an external trigger as in the northward turning of the IMF model of Lyons (1995). We show that incorporating an external trigger, initiated by a fast northward turning of the IMF, into WINDMI, a low-dimensional model of substorms, yields improved predictions of substorm evolution in terms of the AL index. Intrinsic database uncertainties in the timing between the ground-based AL electrojet signal and the arrival time at the magnetopause of the IMF data measured by spacecraft in the solar wind prevent a sharp division between type I and II events. However, within these timing limitations we find that the fraction of events is roughly 40% type I, 40% type II, and 20% type III.


2016 ◽  
Vol 230 (5-7) ◽  
Author(s):  
Chandrima Chakravarty ◽  
Poulami Ghosh ◽  
Bikash Mandal ◽  
Pranab Sarkar

AbstractBy using density-functional tight-binding method we have calculated the electronic structure of graphene quantum dot (GQD)-fullerene hybrid systems and explored the efficacy of their use in designing solar cells. We have shown that the electronic energy levels of the nanohybrids can be tuned either by varying the size of the quantum dots or by proper functionalization of the quantum dot (QD). The GQD-fullerene nanohybrids form type-I or type-II band energy alignment depending upon the size of the GQD. Thus, hybrid systems with smaller sized QDs form type-II band energy alignment while those of larger GQDs form type-I alignment. The type-II band alignment confirms the spatial charge separation for the systems and thus the rate of recombination of charge carriers will be low. The value of


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
M.E. Lidstrom ◽  
C.C. Remsen

Methylotrophic bacteria play an Important role in the environment in the oxidation of methane and methanol. Extensive intracytoplasmic membranes (ICM) have been associated with the oxidation processes in methylotrophs and chemolithotrophic bacteria. Classification on the basis of ICM arrangement distinguishes 2 types of methylotrophs. Bundles or vesicular stacks of ICM located away from the cytoplasmic membrane and extending into the cytoplasm are present in Type I methylotrophs. In Type II methylotrophs, the ICM form pairs of peripheral membranes located parallel to the cytoplasmic membrane. Complex cell wall structures of tightly packed cup-shaped subunits have been described in strains of marine and freshwater phototrophic sulfur bacteria and several strains of methane oxidizing bacteria. We examined the ultrastructure of the methylotrophs with particular view of the ICM and surface structural features, between representatives of the Type I Methylomonas albus (BG8), and Type II Methylosinus trichosporium (OB-36).


Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


Sign in / Sign up

Export Citation Format

Share Document