Frictional pressure drops of two-phase gas-liquid flow in rectangular channels

1990 ◽  
Vol 3 (4) ◽  
pp. 362-372 ◽  
Author(s):  
Hideo Ide ◽  
Hirohisa Matsumura
1984 ◽  
Vol 39 (4) ◽  
pp. 751-765 ◽  
Author(s):  
Leon Troniewski ◽  
Roman Ulbrich

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2419
Author(s):  
Roman Dyga ◽  
Sebastian Brol

This paper describes experimental investigations of single-phase and two-phase gas–liquid flow through channels with a diameter of 20 mm and length of 2690 mm, filled with metal foams. Three types of aluminium foams with pore densities of 20, 30 and 40 PPI and porosities ranging from 29.9% to 94.3% were used. Air, water and oil were pumped through the foams. The tests covered laminar, transitional and turbulent flow. We demonstrated that the Reynolds number, in which the hydraulic dimension should be defined based on foam porosity and pore diameter de = ϕdp/(1 − ϕ), can be used as a flow regime assessment criterion. It has been found that fluid pressure drops when flowing through metal foams significantly depends on the cell size and porosity of the foam, as well as the shape of the foam skeleton. The flow patterns had a significant influence on the pressure drop. Among other things, we observed a smaller pressure drop when plug flow changed to stratified flow. We developed a model to describe pressure drop in flow through metal foams. As per the proposed methodology, pressure drop in single-phase flow should be determined based on the friction factor, taking into account the geometrical parameters of the foams. We propose to calculate pressure drop in gas–liquid flow as the sum of pressure drops in gas and liquid pressure drop corrected by the drop amplification factor.


2012 ◽  
Vol 9 (1) ◽  
pp. 131-135
Author(s):  
M.A. Pakhomov

The paper presents the results of modeling the dynamics of flow, friction and heat transfer in a descending gas-liquid flow in the pipe. The mathematical model is based on the use of the Eulerian description for both phases. The effect of a change in the degree of dispersion of the gas phase at the input, flow rate, initial liquid temperature and its friction and heat transfer rate in a two-phase flow. Addition of the gas phase causes an increase in heat transfer and friction on the wall, and these effects become more noticeable with increasing gas content and bubble diameter.


2017 ◽  
Vol 159 ◽  
pp. 00004 ◽  
Author(s):  
German Bartkus ◽  
Igor Kozulin ◽  
Vladimir Kuznetsov

Sign in / Sign up

Export Citation Format

Share Document