scholarly journals Pressure Drops in Two-Phase Gas–Liquid Flow through Channels Filled with Open-Cell Metal Foams

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2419
Author(s):  
Roman Dyga ◽  
Sebastian Brol

This paper describes experimental investigations of single-phase and two-phase gas–liquid flow through channels with a diameter of 20 mm and length of 2690 mm, filled with metal foams. Three types of aluminium foams with pore densities of 20, 30 and 40 PPI and porosities ranging from 29.9% to 94.3% were used. Air, water and oil were pumped through the foams. The tests covered laminar, transitional and turbulent flow. We demonstrated that the Reynolds number, in which the hydraulic dimension should be defined based on foam porosity and pore diameter de = ϕdp/(1 − ϕ), can be used as a flow regime assessment criterion. It has been found that fluid pressure drops when flowing through metal foams significantly depends on the cell size and porosity of the foam, as well as the shape of the foam skeleton. The flow patterns had a significant influence on the pressure drop. Among other things, we observed a smaller pressure drop when plug flow changed to stratified flow. We developed a model to describe pressure drop in flow through metal foams. As per the proposed methodology, pressure drop in single-phase flow should be determined based on the friction factor, taking into account the geometrical parameters of the foams. We propose to calculate pressure drop in gas–liquid flow as the sum of pressure drops in gas and liquid pressure drop corrected by the drop amplification factor.

2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Manmatha K. Roul ◽  
Sukanta K. Dash

Two-phase flow pressure drops through thin and thick orifices have been numerically investigated with air–water flows in horizontal pipes. Two-phase computational fluid dynamics (CFD) calculations, using the Eulerian–Eulerian model have been employed to calculate the pressure drop through orifices. The operating conditions cover the gas and liquid superficial velocity ranges Vsg = 0.3–4 m/s and Vsl = 0.6–2 m/s, respectively. The local pressure drops have been obtained by means of extrapolation from the computed upstream and downstream linearized pressure profiles to the orifice section. Simulations for the single-phase flow of water have been carried out for local liquid Reynolds number (Re based on orifice diameter) ranging from 3 × 104 to 2 × 105 to obtain the discharge coefficient and the two-phase local multiplier, which when multiplied with the pressure drop of water (for same mass flow of water and two phase mixture) will reproduce the pressure drop for two phase flow through the orifice. The effect of orifice geometry on two-phase pressure losses has been considered by selecting two pipes of 60 mm and 40 mm inner diameter and eight different orifice plates (for each pipe) with two area ratios (σ = 0.73 and σ = 0.54) and four different thicknesses (s/d = 0.025–0.59). The results obtained from numerical simulations are validated against experimental data from the literature and are found to be in good agreement.


AIChE Journal ◽  
2017 ◽  
Vol 63 (10) ◽  
pp. 4694-4704 ◽  
Author(s):  
Jisong Zhang ◽  
Andrew R. Teixeira ◽  
Lars Thilo Kögl ◽  
Lu Yang ◽  
Klavs F. Jensen

2012 ◽  
Vol 29 (2) ◽  
pp. 115 ◽  
Author(s):  
N.Z Aung ◽  
T Yuwono

Nine existing mixture viscosity models were tested for predicting a two-phase pressure drop for oil-water flow and refrigerant (R.134a) flow. The predicted data calculated by using these mixture viscosity models were compared with experimental data. Predicted data from using one group of mixture viscosity models had a good agreement with the experimental data for oil-water two-phase flow. Another group of viscosity models was preferable for gas-liquid flow, but these models gave underestimated values with an error of about 50%. A new and more reliable mixture viscosity model was proposed for use in the prediction of pressure drop in gas-liquid two-phase flow.


Author(s):  
Felix Reichmann ◽  
Moritz-Julian Koch ◽  
Norbert Kockmann

Gas-liquid flow in microchannels has drawn much attention in the last years in research fields of analytics and applications such as oxidations or hydrogenations. High interfacial area leads to increased mass transfer and intensified reactions. Since surface forces are increasingly important on small scale, bubble coalescence is detrimental and leads to Taylor bubble flow in microchannels. To overcome this limitation, we have investigated the gas-liquid flow through nozzles and particularly the bubble breakup behind the nozzle. Two different regimes of bubble breakup were identified, laminar and turbulent with different mechanisms. Although turbulent breakup is not common in microchannels, its mechanisms were studied for the first time and can give new insight for two-phase flow mechanisms.


Sign in / Sign up

Export Citation Format

Share Document