Dopant redistribution during the formation of tungsten disilicide by rapid thermal processing

1994 ◽  
Vol 22 (2-3) ◽  
pp. 168-171 ◽  
Author(s):  
J.C. Dupuy ◽  
A. Essaadani ◽  
A. Sibai ◽  
D. Barbier
2003 ◽  
Vol 125 (3) ◽  
pp. 504-511 ◽  
Author(s):  
Ching-Kong Chao ◽  
Shih-Yu Hung ◽  
Cheng-Ching Yu

The concept of rapid thermal processing has many potential applications in microelectronics manufacturing, but the details of chamber design remains an active area of research. In this work the influence of lamps radius on the thermal stresses in a wafer during the cooling process is studied in detail. Since the equations governing the present thermal-elastic system are coupled in nature, the solution for the temperature and stresses must proceed simultaneously by using a fully implicit finite difference method. After the thermal stresses are obtained, the optimum lamps radii for various heights of the chamber under the constant power ramp-down control scheme are determined based on the maximum shear stress failure criterion. The shortest cooling time that can significantly reduce the thermal budget and dopant redistribution is also predicted by applying the maximum stress control scheme. The result obtained is useful in the design of a reliable rapid thermal processor based on a more practical consideration, thermal stress.


1991 ◽  
Vol 224 ◽  
Author(s):  
T. Y. Hsieh ◽  
K. H. Jung ◽  
D. L. Kwong ◽  
T. H. Koschmieder ◽  
J. C. Thompson

AbstractIn-situ precleaning of the substrate surface plays a critical role in Si epitaxial growth. We have demonstrated that the preclean process can cause considerable surface damage, which strongly depends on process parameters such as system base pressure and temperature. Nomarski optical microscopy, SEM, and optical reflectance were used to characterize the surface morphology. Optical reflectance was more sensitive to surface damage but was also strongly dependent on substrate dopant redistribution after high temperature processing.


1986 ◽  
Vol 9 (5) ◽  
pp. 338-339
Author(s):  
H. Tollet ◽  
P. Bielen ◽  
C. Creemers ◽  
H. Van Hove ◽  
A. Neyens ◽  
...  

1983 ◽  
Vol 23 ◽  
Author(s):  
C. B. Cooper ◽  
R. A. Powell ◽  
R. Chow

ABSTRACTThe successful use of rapid thermal processing in an isothermal mode to form Ti polycide structures is described. The silicide was sputter deposited from a composite Ti-Si target onto phosphorus-doped poly-Si. The resulting polycide structure was annealed by exposure to the blackbody radiation from a resistively-heated graphite heater. Rapid diffusion of the P into the Ti silicide is observed even for short annealing times, although resulting P concentrations in the silicide (>7 × 1018cm−3) are relatively low, about 100 times lower than in the doped poly-Si. Properly chosen RTP parameters can minimize the sheet resistance of the polycide without increasing the sheet resistance of the underlying poly-Si layer, which has not been possible for furnace-annealed samples.


2019 ◽  
Vol 8 (1) ◽  
pp. P35-P40 ◽  
Author(s):  
Haruo Sudo ◽  
Kozo Nakamura ◽  
Susumu Maeda ◽  
Hideyuki Okamura ◽  
Koji Izunome ◽  
...  

1994 ◽  
Vol 141 (11) ◽  
pp. 3200-3209 ◽  
Author(s):  
Charles D. Schaper ◽  
Mehrdad M. Moslehi ◽  
Krishna C. Saraswat ◽  
Thomas Kailath

1990 ◽  
Vol 29 (Part 2, No. 1) ◽  
pp. L137-L140 ◽  
Author(s):  
Hisashi Fukuda ◽  
Akira Uchiyama ◽  
Takahisa Hayashi ◽  
Toshiyuki Iwabuchi ◽  
Seigo Ohno

1987 ◽  
Vol 92 ◽  
Author(s):  
A. Usami ◽  
Y. Tokuda ◽  
H. Shiraki ◽  
H. Ueda ◽  
T. Wada ◽  
...  

ABSTRACTRapid thermal processing using halogen lamps was applied to the diffusion of Zn into GaAs0.6 P0.4:Te from Zn-doped oxide films. The Zn diffusion coefficient of the rapid thermal diffused (RTD) samples at 800°C for 6 s was about two orders of magnitude higher than that of the conventional furnace diffused samples at 800°C for 60 min. The enhanced diffusion of Zn by RTD may be ascribed to the stress field due to the difference in the thermal expansion coefficient between the doped oxide films and GaAs0.6P0.4 materials, and due to the temperature gradient in GaAs0.6P0 4 materials. The Zn diffusion coefficient at Zn concentration of 1.0 × l018 cm−3 was 3.6 × 10−11, 3.1 × 10−11 and 5.0 × 10−12 cm2 /s for the RTD samples at 950°C for 6 s from Zn-, (Zn,Ga)- and (Zn,P)-doped oxide films, respectively. This suggests that Zn diffusibility was controlled by the P in the doped oxide films.


Sign in / Sign up

Export Citation Format

Share Document