Chemical principles in the organization of lipid components in the mycobacterial cell envelope

1991 ◽  
Vol 142 (4) ◽  
pp. 423-427 ◽  
Author(s):  
D.E. Minnikin
2018 ◽  
Vol 130 (19) ◽  
pp. 5365-5370 ◽  
Author(s):  
Frances P. Rodriguez-Rivera ◽  
Xiaoxue Zhou ◽  
Julie A. Theriot ◽  
Carolyn R. Bertozzi

2022 ◽  
Author(s):  
Michael G. Wuo ◽  
Charles L Dulberger ◽  
Robert A. Brown ◽  
Alexander Sturm ◽  
Eveline Ultee ◽  
...  

The current understanding of mycobacterial cell envelope remodeling in response to antibiotics is limited. Chemical tools that report on phenotypic changes with minimal cell wall perturbation are critical to gaining insight into this time-dependent phenomenon. Herein we describe a fluorogenic chemical probe that reports on mycobacterial cell envelope assembly in real time. We used time-lapse microscopy to reveal distinct spatial and temporal changes in the mycobacterial membrane upon treatment with frontline antibiotics. Differential antibiotic treatment elicited unique cellular phenotypes, providing a platform for monitoring cell envelope construction and remodeling responses simultaneously. Analysis of the imaging data indicates a role for antibiotic-derived outer membrane vesicles in immune modulation.


2019 ◽  
Author(s):  
Amol Arunrao Pohane ◽  
Caleb R. Carr ◽  
Jaishree Garhyan ◽  
Benjamin M. Swarts ◽  
M. Sloan Siegrist

AbstractThe mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune and antibiotic insults. We find that there is mycomembrane remodeling along the periphery of nutrient-starved, non-replicating mycobacterial cells. Remodeling is supported by recycling of trehalose, a non-mammalian disaccharide that shuttles long-chain mycolate lipids to the mycomembrane. In the absence of trehalose recycling, mycomembrane synthesis continues but mycobacteria experience ATP depletion, enhanced respiration and redox stress. Redox stress from depletion of the trehalose pool is suppressed in a mutant that lacks the OtsAB de novo trehalose synthesis pathway. Our data suggest that trehalose recycling alleviates the energetic burden of mycomembrane remodeling. Loss of trehalose salvage is known to attenuate M. tuberculosis during infection and render the bacterium more susceptible to a variety of drugs. Recycling pathways are emerging targets for sensitizing resource-limited bacterial pathogens to host and antibiotic stress.


2020 ◽  
Author(s):  
Mary Jackson ◽  
Casey M. Stevens ◽  
Lei Zhang ◽  
Helen I. Zgurskaya ◽  
Michael Niederweis

Tuberculosis ◽  
2019 ◽  
Vol 115 ◽  
pp. 26-41 ◽  
Author(s):  
M.E. Sarmiento ◽  
N. Alvarez ◽  
K.L. Chin ◽  
F. Bigi ◽  
Y. Tirado ◽  
...  

2019 ◽  
Vol 116 (23) ◽  
pp. 11241-11246 ◽  
Author(s):  
Chih-Chia Su ◽  
Philip A. Klenotic ◽  
Jani Reddy Bolla ◽  
Georgiana E. Purdy ◽  
Carol V. Robinson ◽  
...  

The cell envelope ofMycobacterium tuberculosisis notable for the abundance of mycolic acids (MAs), essential to mycobacterial viability, and of other species-specific lipids. The mycobacterial cell envelope is extremely hydrophobic, which contributes to virulence and antibiotic resistance. However, exactly how fatty acids and lipidic elements are transported across the cell envelope for cell-wall biosynthesis is unclear. Mycobacterial membrane protein Large 3 (MmpL3) is essential and required for transport of trehalose monomycolates (TMMs), precursors of MA-containing trehalose dimycolates (TDM) and mycolyl arabinogalactan peptidoglycan, but the exact function of MmpL3 remains elusive. Here, we report a crystal structure ofMycobacterium smegmatisMmpL3 at a resolution of 2.59 Å, revealing a monomeric molecule that is structurally distinct from all known bacterial membrane proteins. A previously unknown MmpL3 ligand, phosphatidylethanolamine (PE), was discovered inside this transporter. We also show, via native mass spectrometry, that MmpL3 specifically binds both TMM and PE, but not TDM, in the micromolar range. These observations provide insight into the function of MmpL3 and suggest a possible role for this protein in shuttling a variety of lipids to strengthen the mycobacterial cell wall.


1996 ◽  
Vol 15 (4) ◽  
pp. 213-222 ◽  
Author(s):  
Melvin E. Klegerman ◽  
Priscilla O. Devadoss ◽  
José L. Garrido ◽  
Hector R. Reyes ◽  
Michael J. Groves

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Laura Chiaradia ◽  
Cyril Lefebvre ◽  
Julien Parra ◽  
Julien Marcoux ◽  
Odile Burlet-Schiltz ◽  
...  

2020 ◽  
Vol 295 (32) ◽  
pp. 11184-11194 ◽  
Author(s):  
Laurie Thouvenel ◽  
Gautier Prevot ◽  
Laura Chiaradia ◽  
Julien Parra ◽  
Emmanuelle Mouton-Barbosa ◽  
...  

Trehalose polyphleates (TPP) are high-molecular-weight, surface-exposed glycolipids present in a broad range of nontuberculous mycobacteria. These compounds consist of a trehalose core bearing polyunsaturated fatty acyl substituents (called phleic acids) and a straight-chain fatty acid residue and share a common basic structure with trehalose-based glycolipids produced by Mycobacterium tuberculosis. TPP production starts in the cytosol with the formation of a diacyltrehalose intermediate. An acyltransferase, called PE, subsequently catalyzes the transfer of phleic acids onto diacyltrehalose to form TPP, and an MmpL transporter promotes the export of TPP or its precursor across the plasma membrane. PE is predicted to be an anchored membrane protein, but its topological organization is unknown, raising questions about the subcellular localization of the final stage of TPP biosynthesis and the chemical nature of the substrates that are translocated by the MmpL transporter. Here, using genetic, biochemical, and proteomic approaches, we established that PE of Mycobacterium smegmatis is exported to the cell envelope following cleavage of its signal peptide and that this process is required for TPP biosynthesis, indicating that the last step of TPP formation occurs in the outer layers of the mycobacterial cell envelope. These results provide detailed insights into the molecular mechanisms controlling TPP formation and transport to the cell surface, enabling us to propose an updated model of the TPP biosynthetic pathway. Because the molecular mechanisms of glycolipid production are conserved among mycobacteria, these findings obtained with PE from M. smegmatis may offer clues to glycolipid formation in M. tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document