Micro-computer-based optimization of the surface grinding process

1992 ◽  
Vol 29 (1-3) ◽  
pp. 75-90 ◽  
Author(s):  
X.M. Wen ◽  
A.A.O. Tay ◽  
A.Y.C. Nee
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Amon Gasagara ◽  
Wuyin Jin ◽  
Angelique Uwimbabazi

This article presents a new model of the flat surface grinding process vibration conditions. The study establishes a particular analysis and comparison between the influence of the normal and tangential components of grinding forces on the vibration conditions of the process. The bifurcation diagrams are used to examine the process vibration conditions for the depth of cut and the cutting speed as the bifurcation parameters. The workpiece is considered to be rigid and the grinding wheel is modeled as a nonlinear two-degrees-of-freedom mass-spring-damper oscillator. To verify the model, experiments are carried out to analyze in the frequency domain the normal and tangential dynamic grinding forces. The results of the process model simulation show that the vibration condition is more affected by the normal component than the tangential component of the grinding forces. The results of the tested experimental conditions indicate that the cutting speed of 30 m/s can permit grinding at the depth of cut up to 0.02 mm without sacrificing the process of vibration behavior.


2003 ◽  
Vol 27 (3) ◽  
pp. 193-204 ◽  
Author(s):  
Andrew Warkentin ◽  
Robert Bauer

Grinding involves many randomly shaped and distributed abrasive grains removing material from a workpiece. Wheel wear results when these grains dull, fracture or break away. As a result, grinding forces are time-varying. In order to automate and optimize the grinding process an understanding of how forces are generated and change during grinding is critical to avoid workpiece damage, surface finish deterioration, cracking, excessive heat generation, and excessive residue stresses. This paper builds upon the existing grinding literature by studying the relationships between wheel wear and grinding forces for different depths of cut when surface grinding mild steel with an aluminum oxide wheel.


Sign in / Sign up

Export Citation Format

Share Document