ANALYSIS OF WHEEL WEAR USING FORCE DATA IN SURFACE GRINDING

2003 ◽  
Vol 27 (3) ◽  
pp. 193-204 ◽  
Author(s):  
Andrew Warkentin ◽  
Robert Bauer

Grinding involves many randomly shaped and distributed abrasive grains removing material from a workpiece. Wheel wear results when these grains dull, fracture or break away. As a result, grinding forces are time-varying. In order to automate and optimize the grinding process an understanding of how forces are generated and change during grinding is critical to avoid workpiece damage, surface finish deterioration, cracking, excessive heat generation, and excessive residue stresses. This paper builds upon the existing grinding literature by studying the relationships between wheel wear and grinding forces for different depths of cut when surface grinding mild steel with an aluminum oxide wheel.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Amon Gasagara ◽  
Wuyin Jin ◽  
Angelique Uwimbabazi

This article presents a new model of the flat surface grinding process vibration conditions. The study establishes a particular analysis and comparison between the influence of the normal and tangential components of grinding forces on the vibration conditions of the process. The bifurcation diagrams are used to examine the process vibration conditions for the depth of cut and the cutting speed as the bifurcation parameters. The workpiece is considered to be rigid and the grinding wheel is modeled as a nonlinear two-degrees-of-freedom mass-spring-damper oscillator. To verify the model, experiments are carried out to analyze in the frequency domain the normal and tangential dynamic grinding forces. The results of the process model simulation show that the vibration condition is more affected by the normal component than the tangential component of the grinding forces. The results of the tested experimental conditions indicate that the cutting speed of 30 m/s can permit grinding at the depth of cut up to 0.02 mm without sacrificing the process of vibration behavior.


2018 ◽  
Vol 178 ◽  
pp. 03016
Author(s):  
Nikolaos E. Karkalos ◽  
Angelos P. Markopoulos

Grinding involves the use of a large number of micrometric abrasive grains in order to remove material from workpiece surface efficiently and finally render a high quality surface. More specifically, grinding in the nano-metric level serves for attaining nano-level surface quality by removing several layers of atoms from the workpiece surface. The abrasive grains act as individual cutting tools, performing primarily material removal but also induce alterations in the subsurface regions. In order to study the nano-grinding process, Molecular Dynamics (MD) method is particularly capable to provide comprehensive observations of the process and its outcome. In this study, MD simulations of multi-pass grinding for copper substrates, using two abrasive grains, are performed. After the simulations are carried out, results concerning grinding forces and temperatures are presented and discussed.


2004 ◽  
Vol 126 (1) ◽  
pp. 107-114 ◽  
Author(s):  
R. P. Upadhyaya ◽  
S. Malkin

An investigation is reported on the thermal aspects of grinding with single layer electroplated CBN wheels. The topography of these wheels is not periodically restored by dressing or truing, so the grinding behavior progressively changes as the wheel wears down. Straight surface grinding experiments were conducted to determine the effect of wheel wear and fluid flow on the grinding temperatures and energy partition. Low energy partition values of 3%–8% were obtained at temperatures below the fluid burnout limit. The energy partition results were analyzed in terms of a topographical analysis of the wheel surface and a thermal model which accounts for the removal of heat at the grinding zone by conduction to the abrasive grains and to the grinding fluid.


2011 ◽  
Vol 325 ◽  
pp. 147-152
Author(s):  
Qiu Lin Niu ◽  
Guo Giang Guo ◽  
Xiao Jiang Cai ◽  
Zhi Qiang Liu ◽  
Ming Chen

As two kinds of advanced titanium alloys, TC18 and TA19 were introduced in this paper. The machinabilities of TC18 and TA19 alloys were described in the grinding process. Grinding experiments were completed using green silicon carbide grinding wheel with the coarser 100 grit. Grinding forces and specific energy in surface grinding were investigated. And then, for studying the grinding characteristic, SEM images of the workpiece material were obtained. The results indicated that specific chip formation had the great effect on the mechanism of grinding TC18 and TA19 alloys, and the scratch was the main characteristic of surface grinding. TC18 alloy had the poor grinding performance compared to TA19 alloy.


Author(s):  
Jarosław Sieniawski ◽  
Krzysztof Nadolny

The tribology of the grinding process can be considered in the context of a tribosystem, in which the main structural elements (grinding wheel, workpiece, grinding fluid, and environment) are interrelated and interdependent. One of the most important factors influencing the contact conditions of these listed elements of the grinding process tribosystem are the proper selection of grinding fluids and anti-adhesive substances, as well as careful consideration of how they are applied. This article describes a new zonal centrifugal coolant provision system as well as the results of experimental studies conducted into its use. The aim of these experiments was to determine the impact of the system of grinding fluids provision on grinding wheel radial wear in the surface grinding process of steel CrV12. Reference methods within the described studies consisted of dry grinding and grinding using the flood method, among others. The obtained results of the experiment revealed that the use of a zonal centrifugal coolant provision system enabled the acquisition of a similar radial wear rate of the grinding wheel at 90% reduction of grinding fluids flow rate, compared with flooding method. It was also demonstrated that in the most favorable conditions, it is even possible to significantly reduce the intensity of the radial wheel wear, compared with the conventional method.


2011 ◽  
Vol 704-705 ◽  
pp. 318-324
Author(s):  
Y.Q. Xu ◽  
T. Zhang ◽  
Y.M. Bai

Grinding induces residual stresses, which can play an important role on the fatigue of the component. In general, residual stresses in a ground surface are primarily generated due to three effects: thermal expansion and contraction during grinding, plastic deformation caused by the abrasive grains of the wheel and phase transformations due to high grinding temperature. It was found that thermal expansion and plastic deformation in the grinding process were the major causes of residual stresses. In this paper, an analysis model for the calculation of residual stresses induced by a surface grinding process on an ultrahigh-strength steel (Aermet100) workpiece is presented. Firstly, the stress distribution induces by thermal expansion was obtained base on the transient heat conduction equation and the thermal properties of Aermet100. All the calculations were based on the moving heat source solution which was modeled as a uniformly distributed, 2D heat source moving across the surface of a half-space, found in Carslaw and Jaeger. The results show that the near surface residual stress is predominantly tensile and that the magnitude of this stress increases with increasing heat flux values. Secondly, the plastic deformation caused by the abrasive grains of the wheel was simulated base on the grain-workpiece interaction. The chip formation process and the material removal mechanisms can be examined using the micro-scale approach. The results show that the residual stress induced by the grinding force itself is generally compressive which is smaller than the residual tensile stress induced by thermal stress. Therefore, the residual stress brought about by grinding operation is generally a tensile stress. This paper offers an insight into the mechanism understanding of thermal and mechanical residual stresses induced by surface grinding. Key words: grinding, residual stress, grain


Author(s):  
Leire Godino ◽  
Iñigo Pombo ◽  
Jose Antonio Sanchez ◽  
Borja Izquierdo

Manufacturing of grinding wheels is continuously adapting to new industrial requirements. New abrasives and new wheel configurations, together with wheel wear control allow for grinding process optimization. However, the wear behavior of the new abrasive materials is not usually studied from a scientific point of view due to the difficulty to control and monitor all the variables affecting the tribochemical wear mechanisms. In this work an original design of pin on disk tribometer is developed in a CNC grinding machine. An Alumina grinding wheel with special characteristics is employed and two types of abrasive are compared: White Fused Alumina (WFA) and Sol-Gel Alumina (SG). The implemented tribometer reaches sliding speeds of between 20 and 30 m/s and real contact pressures up to 190 MPa. The results show that the wear behavior of the abrasive grains is strongly influenced by their crystallographic structure and the tribometer appears to be a very good tool for characterizing the wear mechanisms of grinding wheels, depending on the abrasive grains.


2003 ◽  
Vol 125 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Cheol W. Lee ◽  
Taejun Choi ◽  
Yung C. Shin

This paper presents implementation results of surface grinding processes based on the model-based optimization scheme proposed by Lee and Shin (Lee, C. W., and Shin, Y. C., 2000 “Evolutionary Modeling and Optimization of Grinding Processes,” Int. J. Prod. Res. 38(12), pp. 2787–2813). In order to accomplish this goal, process models for grinding force, power, surface roughness, and residual stress are developed based on the generalized grinding model structures using experimental data. The time-varying characteristics due to wheel wear are also investigated in order to determine the optimal dressing interval. Grinding optimization is considered as constrained nonlinear optimization problems with mixed-integer variables and time-varying characteristics in this study. Case studies are performed with various optimization objectives including minimization of grinding cost, minimization of cycle time, and process control. The optimal process conditions determined by the optimization scheme are validated by experimental results.


Sign in / Sign up

Export Citation Format

Share Document