MASS SPECTROMETRY | Mass Separation

Author(s):  
K.J. Welham
2018 ◽  
Vol 4 (3) ◽  
Author(s):  
Josefina Pérez-Arantegui ◽  
Francisco Laborda

Abstract Inorganic mass spectrometry has been used as a well-known analytical technique to determine elemental/isotopic composition of very diverse materials, based on the different mass-to-charge ratios of the ions produced in a specific source. In this case, two mass spectrometric techniques are explained and their analytical properties discussed: inductively coupled plasma mass spectrometry (ICP-MS) and thermal ionisation mass spectrometry (TIMS), since they are the most used in art and archaeological material studies. Both techniques combine advantageous analytical properties, like low detection limits, low interferences and high precision. The use of laser ablation as sample introduction system in ICP-MS allows to avoid sample preparation and to perform good spatial-resolution analysis. The development of new instruments, improving the mass separation and the detection of the ions, specially multicollection detectors, results in high-precision isotopic analysis. A summary of the important applications of these mass spectrometric techniques to the analysis of art and archaeological materials is also highlighted.


2018 ◽  
Vol 106 (7) ◽  
pp. 535-547 ◽  
Author(s):  
Holger Dorrer ◽  
Katerina Chrysalidis ◽  
Thomas Day Goodacre ◽  
Christoph E. Düllmann ◽  
Klaus Eberhardt ◽  
...  

Abstract Several experiments on the study of the electron neutrino mass are based on high-statistics measurements of the energy spectrum following electron capture of the radionuclide 163Ho. They rely on the availability of large, radiochemically pure samples of 163Ho. Here, we describe the production, separation, characterization, and sample production within the Electron Capture in Holmium-163 (ECHo) project. 163Ho has been produced by thermal neutron activation of enriched, prepurified 162Er targets in the high flux reactor of the Institut Laue-Langevin, Grenoble, France, in irradiations lasting up to 54 days. Irradiated targets were chemically processed by means of extraction chromatography, which allowed separating the formed Ho from the 162Er target-material and from the main byproducts 170Tm and 171Tm, which are co-produced in GBq amounts. Decontamination factors of >500 for Er and of >105 for Tm and yields of 3.6·1016 and 1.2·1018 atoms of 163Ho were obtained, corresponding to a recovery yield of 95 % of Ho in the chemical separation. The Ho-fraction was characterized by means of γ-ray spectrometry, Inductively-Coupled-Plasma Mass Spectrometry (ICP-MS), Resonance Ionization Mass Spectrometry (RIMS) and Neutron Activation Analysis (NAA). In this process, the thermal neutron capture cross section of 163Ho was measured to σHo-163 to Ho-164m= (23±3) b and σHo-163 to Ho-164g= (156±9) b for the formation of the two isomers of 164Ho. Specific samples were produced for further purification by mass separation to isolate 163Ho from the Ho-isotope mixture, as needed for obtaining the energy spectrum within ECHo. The partial efficiency for this second separation step is (32±5) %.


2012 ◽  
Vol 5 (1) ◽  
pp. 487-504 ◽  
Author(s):  
Christie G. Enke ◽  
Steven J. Ray ◽  
Alexander W. Graham ◽  
Elise A. Dennis ◽  
Gary M. Hieftje ◽  
...  

Author(s):  
Philippe Fragu

The identification, localization and quantification of intracellular chemical elements is an area of scientific endeavour which has not ceased to develop over the past 30 years. Secondary Ion Mass Spectrometry (SIMS) microscopy is widely used for elemental localization problems in geochemistry, metallurgy and electronics. Although the first commercial instruments were available in 1968, biological applications have been gradual as investigators have systematically examined the potential source of artefacts inherent in the method and sought to develop strategies for the analysis of soft biological material with a lateral resolution equivalent to that of the light microscope. In 1992, the prospects offered by this technique are even more encouraging as prototypes of new ion probes appear capable of achieving the ultimate goal, namely the quantitative analysis of micron and submicron regions. The purpose of this review is to underline the requirements for biomedical applications of SIMS microscopy.Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue.


Author(s):  
K.K. Soni ◽  
D.B. Williams ◽  
J.M. Chabala ◽  
R. Levi-Setti ◽  
D.E. Newbury

In contrast to the inability of x-ray microanalysis to detect Li, secondary ion mass spectrometry (SIMS) generates a very strong Li+ signal. The latter’s potential was recently exploited by Williams et al. in the study of binary Al-Li alloys. The present study of Al-Li-Cu was done using the high resolution scanning ion microprobe (SIM) at the University of Chicago (UC). The UC SIM employs a 40 keV, ∼70 nm diameter Ga+ probe extracted from a liquid Ga source, which is scanned over areas smaller than 160×160 μm2 using a 512×512 raster. During this experiment, the sample was held at 2 × 10-8 torr.In the Al-Li-Cu system, two phases of major importance are T1 and T2, with nominal compositions of Al2LiCu and Al6Li3Cu respectively. In commercial alloys, T1 develops a plate-like structure with a thickness <∼2 nm and is therefore inaccessible to conventional microanalytical techniques. T2 is the equilibrium phase with apparent icosahedral symmetry and its presence is undesirable in industrial alloys.


Author(s):  
Bruno Schueler ◽  
Robert W. Odom

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides unique capabilities for elemental and molecular compositional analysis of a wide variety of surfaces. This relatively new technique is finding increasing applications in analyses concerned with determining the chemical composition of various polymer surfaces, identifying the composition of organic and inorganic residues on surfaces and the localization of molecular or structurally significant secondary ions signals from biological tissues. TOF-SIMS analyses are typically performed under low primary ion dose (static SIMS) conditions and hence the secondary ions formed often contain significant structural information.This paper will present an overview of current TOF-SIMS instrumentation with particular emphasis on the stigmatic imaging ion microscope developed in the authors’ laboratory. This discussion will be followed by a presentation of several useful applications of the technique for the characterization of polymer surfaces and biological tissues specimens. Particular attention in these applications will focus on how the analytical problem impacts the performance requirements of the mass spectrometer and vice-versa.


Sign in / Sign up

Export Citation Format

Share Document