REFLEX VASODILATION IN SKELETAL MUSCLE FOLLOWING STIMULATION OF INTRATHORACIC SENSORY ENDINGS

Author(s):  
JOHN A. BEVAN
FEBS Letters ◽  
1990 ◽  
Vol 259 (2) ◽  
pp. 269-272 ◽  
Author(s):  
F.Norman Briggs ◽  
K.Francis Lee ◽  
Joseph J. Feher ◽  
Andrew S. Wechsler ◽  
Kay Ohiendieck ◽  
...  

2008 ◽  
Vol 100 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Sarah Dutton ◽  
Paul Trayhurn

Angiopoietin-like protein 4 (Angptl4)/FIAF (fasting-induced adipose factor) was first identified as a target for PPAR and to be strongly induced in white adipose tissue (WAT) by fasting. Here we have examined the regulation of the expression and release of this adipokine in mouse WAT and in 3T3-L1 adipocytes. Angptl4/FIAF expression was measured by RT-PCR and real-time PCR; plasma Angptl4/FIAF and release of the protein in cell culture was determined by western blotting. The Angptl4/FIAF gene was expressed in each of the major WAT depots of mice, the mRNA level in WAT being similar to the liver and much higher (>50-fold) than skeletal muscle. Fasting mice (18 h) resulted in a substantial increase in Angptl4/FIAF mRNA in liver and muscle (9·5- and 21-fold, respectively); however, there was no effect of fasting on Angptl4/FIAF mRNA in WAT and the plasma level of Angptl4/FIAF was unchanged. The Angptl4/FIAF gene was expressed in 3T3-L1 adipocytes before and after differentiation, the level increasing post-differentiation; Angptl4/FIAF was released into the culture medium. Insulin, leptin, dexamethasone, noradrenaline, TNFα and several IL (IL-1β, IL-6, IL-10, IL-18) had little effect on Angptl4/FIAF mRNA levels in 3T3-L1 adipocytes. However, a major stimulation of Angptl4/FIAF expression was observed with rosiglitazone and the inflammatory prostaglandins PGD2 and PGJ2. Angptl4/FIAF does not act as an adipose tissue signal of nutritional status, but is markedly induced by fasting in liver and skeletal muscle.


2003 ◽  
Vol 95 (2) ◽  
pp. 577-583 ◽  
Author(s):  
Jianhua Li ◽  
Nicholas C. King ◽  
Lawrence I. Sinoway

Previous studies have suggested that activation of ATP-sensitive P2X receptors in skeletal muscle play a role in mediating the exercise pressor reflex (Li J and Sinoway LI. Am J Physiol Heart Circ Physiol 283: H2636–H2643, 2002). To determine the role ATP plays in this reflex, it is necessary to examine whether muscle interstitial ATP (ATPi) concentrations rise with muscle contraction. Accordingly, in this study, muscle contraction was evoked by electrical stimulation of the L7 and S1 ventral roots of the spinal cord in 12 decerebrate cats. Muscle ATPi was collected from microdialysis probes inserted in the muscle. ATP concentrations were determined by the HPLC method. Electrical stimulation of the ventral roots at 3 and 5 Hz increased mean arterial pressure by 13 ± 2 and 16 ± 3 mmHg ( P < 0.05), respectively, and it increased ATP concentration in contracting muscle by 150% ( P < 0.05) and 200% ( P < 0.05), respectively. ATP measured in the opposite control limb did not rise with ventral root stimulation. Section of the L7 and S1 dorsal roots did not affect the ATPi seen with 5-Hz ventral root stimulation. Finally, ventral roots stimulation sufficient to drive motor nerve fibers did not increase ATP in previously paralyzed cats. Thus ATPi is not largely released from sympathetic or motor nerves and does not require an intact afferent reflex pathway. We conclude that ATPi is due to the release of ATP from contracting skeletal muscle cells.


1978 ◽  
Vol 378 (2) ◽  
pp. 149-154 ◽  
Author(s):  
N. A. Berdina ◽  
J. M. Kots ◽  
I. M. Rodionov ◽  
V. I. Tkhorevsky ◽  
O. L. Vinogradova ◽  
...  

2001 ◽  
Vol 281 (2) ◽  
pp. R561-R571 ◽  
Author(s):  
Jennifer A. Wong ◽  
Aidar R. Gosmanov ◽  
Edward G. Schneider ◽  
Donald B. Thomason

Na+-K+-Cl−cotransporter (NKCC) activity in quiescent skeletal muscle is modest. However, ex vivo stimulation of muscle for as little as 18 contractions (1 min, 0.3 Hz) dramatically increased the activity of the cotransporter, measured as the bumetanide-sensitive 86Rb influx, in both soleus and plantaris muscles. This activation of cotransporter activity remained relatively constant for up to 10-Hz stimulation for 1 min, falling off at higher frequencies (30-Hz stimulation for 1 min). Similarly, stimulation of skeletal muscle with adrenergic receptor agonists phenylephrine, isoproterenol, or epinephrine produced a dramatic stimulation of NKCC activity. It did not appear that stimulation of NKCC activity was a reflection of increased Na+-K+-ATPase activity because insulin treatment did not stimulate NKCC activity, despite insulin's well-known stimulation of Na+-K+-ATPase activity. Stimulation of NKCC activity could be blocked by pretreatment with inhibitors of mitogen-activated protein kinase (MAPK) kinase 1/2 (MEK1/2) activity, indicating that activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) MAPKs may be required. These data indicate a regulated NKCC activity in skeletal muscle that may provide a significant pathway for potassium transport into skeletal muscle fibers.


Sign in / Sign up

Export Citation Format

Share Document