ENERGY USE AND THERMAL COMFORT OF A SINGLE FAMILY SOLAR HOUSE WITH STORAGE TYPE FLOOR HEATING

Author(s):  
M. Udagawa
2020 ◽  
Vol 172 ◽  
pp. 06003
Author(s):  
Ying Zhang ◽  
Thomas Olofsson ◽  
Gireesh Nair ◽  
Chenbo Zhao ◽  
Bin Yang ◽  
...  

With access to modern building technologies and HVAC-systems, it is possible to obtain low energy use and good thermal comfort for complex design, such as large building volumes. However, the situation is different for large single zone buildings with large volumes. They often have insufficient thermal comfort. The problem could be partially attributed to the unwanted airflows due to the cold surfaces, especially the windows. With increased knowledge of the airflow, it is possible to identify suitable renovation strategies in such buildings. In this work, we study a church building with mechanical air change system and floor heating. CFD-simulations with dynamic airflow was conducted based on building geometries and technical data. The validation was based on data from the ventilation control and the space-heating system. The results show how the window-to-wall ratios and the positions of windows affect the thermal comfort. It contributes with knowledge of advantages and disadvantages of different envelope design in the existing environment with floor heating.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5332
Author(s):  
Krzysztof Grygierek ◽  
Izabela Sarna

Today, there is a great deal of emphasis on reducing energy use in buildings for both economic and environmental reasons. Investors strongly encourage the insulating of buildings. Buildings without cooling systems can lead to a deterioration in thermal comfort, even in transitional climate areas. In this article, the effectiveness of natural ventilation in a passive cooling building is analyzed. Two options are considered: cooling with external air supplied to the building by fans, or by opening windows (automatically or by residents). In both cases, fuzzy controllers for the cooling time and supply airflow control are proposed and optimized. The analysis refers to a typical Polish single-family building. Simulations are made with the use of the EnergyPlus program, and the model is validated based on indoor temperature measurement. The calculations were carried out for different climate data: standard and future (warmed) weather data. Research has shown that cooling with external air can effectively improve thermal comfort with a slight increase in heating demand. However, to be able to reach the potential of such a solution, fans should be used.


2021 ◽  
Vol 11 (14) ◽  
pp. 6254
Author(s):  
Elena G. Dascalaki ◽  
Constantinos A. Balaras

In an effort to reduce the operational cost of their dwellings, occupants may even have to sacrifice their indoor thermal comfort conditions. Following the economic recession in Greece over recent years, homeowners have been forced to adapt their practices by shortening heating hours, lowering the indoor thermostat settings, isolating spaces that are not heated or even turning off their central heating system and using alternative local heating systems. This paper presents the results from over 100 occupant surveys using questionnaires and walk-through energy audits in Hellenic households that documented how occupants operated the heating systems in their dwellings and the resulting indoor thermal comfort conditions and actual energy use. The results indicate that the perceived winter thermal comfort conditions were satisfactory in only half of the dwellings, since the actual operating space heating periods averaged only 5 h (compared with the assumed 18 h in standard conditions), while less than half heated their entire dwellings and only a fifth maintained an indoor setpoint temperature of 20 °C, corresponding to standard comfort conditions. Mainstream energy conservation measures include system maintenance, switching to more efficient systems, reducing heat losses and installing controls. This information is then used to derive empirical adaptation factors for bridging the gap between the calculated and actual energy use, making more realistic estimates of the expected energy savings following building renovations, setting prudent targets for energy efficiency and developing effective plans toward a decarbonized building stock.


Author(s):  
Munehiro Yamaguchi ◽  
Sogo Sayama ◽  
Hirokazu Yoneda ◽  
Kin-ya Iwamoto ◽  
Mitsuhiro Harada ◽  
...  

2021 ◽  
pp. 111181
Author(s):  
Mary Taylor ◽  
Nathan Brown ◽  
Donghyun Rim

2021 ◽  
Vol 13 (6) ◽  
pp. 3054
Author(s):  
Renata Tubelo ◽  
Lucelia Rodrigues ◽  
Mark Gillott ◽  
May Zune

In Brazil, the delivery of homes for low-inc ome households is dictated by costs rather than performance. Issues such as the impact of climate change, affordability of operational energy use, and lack of energy security are not taken into account, even though they can severely impact the occupants. In this work, the authors evaluated the thermal performance of two affordable houses as-built and after the integration of envelope improvements. A new replicable method to evaluate the cost-effectiveness of these improvements was proposed. The case study houses comprise the most common affordable housing type delivered widely across Brazil and a proposition of a better affordable housing solution, built in Porto Alegre, southern Brazil, integrating passive design strategies to increase thermal comfort. The findings reveal a potential for improving indoor thermal conditions by up to 76% and 73%, respectively, if costs are not a concern, and 40% and 45% with a cost increase of 12% and 9% if a comfort criterion of 20–25 °C was considered. Equations to estimate costs of improvements in affordable housing were developed. The authors concluded that there is a great scope for building envelope optimisation, and that this is still possible without significant impact on budget.


Energy ◽  
1984 ◽  
Vol 9 (6) ◽  
pp. 465-475 ◽  
Author(s):  
M.R. Brambley ◽  
E.M. Kennedy ◽  
S.J. Romelczyk ◽  
S.S. Penner

Sign in / Sign up

Export Citation Format

Share Document