Rock Mass Behavior During Large-scale Cavern Excavation

Author(s):  
SATOSHI HIBINO ◽  
MUTSUMI MOTOJIMA
Keyword(s):  
Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1913
Author(s):  
Marek Cała ◽  
Katarzyna Cyran ◽  
Joanna Jakóbczyk ◽  
Michał Kowalski

The extraction of the Bełchatów lignite deposit located in the vicinity of the Dębina salt dome requires careful planning that considers the influence of mining projects on the slope and salt dome stability conditions. The instability problem is directly related to horizontal and vertical displacement, as well as the complex geological and mining conditions. These conditions are very unique with regard to the co-occurrence of the salt dome and lignite deposits in the same area, as well as the large scale of the pit wall slope. Thus, predicting rock mass behavior and ensuring the safety of mining operations are important issues. The presented analysis focused on the influence of long-term lignite extraction on the western pit wall slope of the Bełchatów field and the salt dome’s stability conditions. This study offers a comprehensive approach to a complex geotechnical problem defined by large-scale, complex geometry, and geological conditions. The rock mass behavior and stress conditions are simulated in numerical modelling. The results of the presented analysis will be useful not only for present mining activities but also for future developments related to post-mining and recultivation plans.


2004 ◽  
Vol 261-263 ◽  
pp. 1097-1102 ◽  
Author(s):  
Jian Liu ◽  
Xia Ting Feng ◽  
Xiu Li Ding ◽  
Huo Ming Zhou

The time-dependent behavior of rock mass, which is generally governed by joints and shearing zones, is of great significance for engineering design and prediction of long-term deformation and stability. In situ creep test is a more effective method than laboratory test in characterizing the creep behavior of rock mass with joint or shearing zone due to the complexity of field conditions. A series of in situ creep tests on granite with joint at the shiplock area of the Three-Gorges Project and basalt with shearing zone at the right abutment of the Xiluodu Project were performed in this study. Based on the test results, the stress-displacement-time responses of the joints and basalt are analyzed, and their time-dependent constitutive model and model coefficients are given, which is crucial for the design to prevent the creep deformations of rock masses from causing the failure of the operation of the shiplock gate at the Three-Gorges Project and long-term stability of the Xiluodu arc dam.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


Author(s):  
M Perras ◽  
E Ghazvinian ◽  
M Diederichs ◽  
F Amann ◽  
H Wannenmacher

2021 ◽  
Author(s):  
Yang An ◽  
E-chuan Yan ◽  
Xing-ming Li ◽  
Shao-ping Huang

Abstract As a main method of petroleum strategic reserve in China, underground water-sealed storage cavern owns lots of outstanding advantages, such as low operating costs, high safety, and land resource conservation. Main caverns are important structure in underground project and the layout parameters and excavation scheme will have significant impact on overall project quality. The optimization method of main cavern layout and excavation scheme was put forward by a proposed large-scale underground water-sealed cavern project in China. First, based on field survey results, the Hoek-Brown strength criterion combined with rock mass quality Q classification system was used to estimate the equivalent mechanical parameters of rock mass. Second, the numerical experiments were carried out by relying on 3 Dimensions Distinct Element Code (3DEC). The discontinuous medium model was adopted, and displacements of key points, maximum displacement values and volume of the plastic zone were used as evaluation indicators. Axial direction, buried depth, spacing and excavation scheme of main caverns have been optimized. Results showed that axial direction should adopt NW325°, buried depth of cavern roof should locate at -100m, and distance between adjacent main caverns should be 1.5 times the span (36m). The “jump excavation” mode was recommended in construction. That is, the caverns on both sides should be excavated first, and the middle cavern should be excavated later. This mode could effectively reduce the interaction effect between caverns. This method has the characteristics of easy data acquisition and strong operability. It could be used to guide design and construction of similar projects . As a main method of petroleum strategic reserve in China, underground water-sealed storage cavern owns lots of outstanding advantages, such as low operating costs, high safety, and land resource conservation. Main caverns are important structure in underground project and the layout parameters and excavation scheme will have significant impact on overall project quality. The optimization method of main cavern layout and excavation scheme was put forward by a proposed large-scale underground water-sealed cavern project in China. First, based on field survey results, the Hoek-Brown strength criterion combined with rock mass quality Q classification system was used to estimate the equivalent mechanical parameters of rock mass. Second, the numerical experiments were carried out by relying on 3 Dimensions Distinct Element Code (3DEC). The discontinuous medium model was adopted, and displacements of key points, maximum displacement values and volume of the plastic zone were used as evaluation indicators. Axial direction, buried depth, spacing and excavation scheme of main caverns have been optimized. Results showed that axial direction should adopt NW325°, buried depth of cavern roof should locate at -100m, and distance between adjacent main caverns should be 1.5 times the span (36m). The “jump excavation” mode was recommended in construction. That is, the caverns on both sides should be excavated first, and the middle cavern should be excavated later. This mode could effectively reduce the interaction effect between caverns. This method has the characteristics of easy data acquisition and strong operability. It could be used to guide design and construction of similar projects .


Author(s):  
L.K. Miroshnikova ◽  
A.Yu. Mezentsev ◽  
G.A. Kadyralieva ◽  
M.A. Perepelkin

The Zhdanovskoe copper-nickel sulfide ores deposit is located in the north-west of the Murmansk region and is a mineral raw material source for JSC «Kola MMC». The main mining method used is sublevel caving. In some areas, due to the complex shape of the ore bodies, the open stoping mining method is used which requires determining stable parameters of stopes and pillars. It is necessary to study the stress-strain state of the deposit to ensure safe mining conditions. One of the possible solutions is the modeling of the stress-strain state of rock mass using the finite element method, for example, CAE Fidesys, which is FEMbased software. The use of CAE Fidesys for solving geomechanics tasks allows creating models of individual excavation units to determine the stability of stopes and pillars, and large-scale models that include several ore bodies and areas of the host rock mass. The article considers solutions of both types of geomechanic tasks using CAE Fidesys for conditions of the Zhdanovskoe deposit.


Sign in / Sign up

Export Citation Format

Share Document