Back analysis of rock mass behavior of the Quintner Limestone at the Gonzen mine near Sargans, Switzerland

Author(s):  
M Perras ◽  
E Ghazvinian ◽  
M Diederichs ◽  
F Amann ◽  
H Wannenmacher
2014 ◽  
Vol 1020 ◽  
pp. 423-428 ◽  
Author(s):  
Eva Hrubesova ◽  
Marek Mohyla

The paper deals with the back analysis method in geotechnical engineering, that goal is evaluation the more objective and reliable parameters of the rock mass on the basis of in-situ measurements. Stress, deformational, strength and rheological parameters of the rock mass are usually determined by some inaccuracies and errors arising from the complexity and variability of the rock mass. This higher or lower degree of imprecision is reflected in the reliability of the mathematical modelling results. The paper presents the utilization of direct optimization back analysis method, based on the theory of analytical functions of complex variable and Kolosov-Muschelischvili relations, to the evaluation of initial stress state inside the rock massif.


2002 ◽  
pp. 253-262 ◽  
Author(s):  
Kunifumi TAKEUCHI ◽  
Tomoyuki SHIMURA ◽  
Shinichi AKUTAGAWA ◽  
Shunsuke SAKURAI

2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 518
Author(s):  
Babar Khan ◽  
Syed Muhammad Jamil ◽  
Jung Joo Kim ◽  
Turab H. Jafri ◽  
Jonguk Kim

To accommodate traffic volume on roads due to ever-increasing population growth, the widening of highways and motorways is in high demand. Nevertheless, the widening of tunnels on these road networks is quite complex due to the presence of numerous rock types, in situ stress, and different widening modes. To overcome these complexities, eight different tunnel shapes were simulated under varying support conditions for asymmetric and symmetric widening. It was found that the tunnels with a round shape, such as horseshoe and semicircular with flatbed, are more effective for asymmetric widening, whereas the provision of a rounded invert in these shapes can reverse the widening option to symmetric. Furthermore, an insignificant effect of the difference in asymmetric and symmetric widening of regular tunnel shapes, such as box, rectangular, and semi-elliptical, was found. A full factorial design statistical analysis confirmed the decrease in tunnel deformation by using various tunnel support systems and showed a significant deformation difference according to monitoring locations at the tunnel periphery. The deformation difference in the case of both tunnel widening modes was also analyzed according to different design parameters. This study provides a comprehensive understanding of rock mass behavior when the widening of any underground opening is carried out.


2012 ◽  
Vol 170-173 ◽  
pp. 3356-3360
Author(s):  
Wen Dong Yang ◽  
Xi Chao Gao ◽  
Yan Mei Zhang ◽  
Jia Yang ◽  
Gang Wang ◽  
...  

Engineering rock mass is a highly complex grey system, it is impossible to get all the parameters of rock mass by theoretical methods or field measurement approach. Underground engineering feedback analysis method is a reliable way to improve the design, optimization and construction. Based on the field data of underground cavern of a large-scale hydro-power station, the three-dimensional finite element model is established, and orthogonal experimental design and multi-objective optimization method are used for the rapid back analysis. This method could be used for obtaining the rock parameters by inversion calculating in the underground cavern construction of a large-scale hydro-power station. Meanwhile, the inversion parameters could also be applied in the excavation simulation for the next phase and the rock deformation and stability is predicted afterwards. The design and construction sectors are supposed to get its feedback in time, which effectively guarantees the stability of the surrounding rocks.


Sign in / Sign up

Export Citation Format

Share Document