THE PROTAMINE MULTI-GENE FAMILY IN THE DEVELOPING RAINBOW TROUT TESTES/ANALYSIS OF THE ds-cDNA CLONES

Author(s):  
Lashitew Gedccmu ◽  
Gordon H. Dixon ◽  
Michael A. Wosniak ◽  
Kostae Iatrou
2006 ◽  
Vol 190 (3) ◽  
pp. 879-888 ◽  
Author(s):  
Dilip K Garikipati ◽  
Scott A Gahr ◽  
Buel D Rodgers

Myostatin is a potent negative regulator of skeletal muscle growth. Although several cDNA clones have been characterized in different vertebrates, the genomic organization and bioactivity of non-mammalian homologs have not. The intron/exon organization and promoter subsequence analysis of two rainbow trout myostatin genes, rtMSTN-1a and rtMSTN-1b (formerly 1 and 2 respectively), as well as a quantitative assessment of their embryonic, larval, and adult tissue expression profiles are reported herein. Each gene was similarly organized into three exons of 490, 368, and 1600 bp for MSTN-1a and 486, 386, and 1419 bp for MSTN-1b. Comparative mapping of coding regions from several vertebrate myostatin genes revealed a common organization between species, including conserved pre-mRNA splice sites; the first among the fishes and the second across all vertebrate species. In silico subsequence analysis of the promoter regions identified E-boxes and other putative myogenic response elements. However, the number and diversity of elements were considerably less than those found in mammalian promoters or in the recently characterized zebrafish MSTN-2 gene. A quantitative analysis of the embryonic expression profile for both genes indicates that rtMSTN-1a expression is consistently greater than that of rtMSTN-1b and neither gene is significantly expressed throughout gastrulation. Expression of both steadily increases fourfold during somitogenesis and subsides as this period ends. After eyeing, however, rtMSTN-1a mRNA levels ultimately rise 20-fold by day 49 and peak before hatching and yolk sac absorption (YSA). Levels of rtMSTN-1b rise similarly, but do not peak before YSA. An analysis of adult (2-year-old fish) tissue expression indicates that both transcripts are present in most tissues although levels are highest in brain, testes, eyes, muscle, and surprisingly spleen. These studies suggest that strong selective pressures have preserved the genomic organization of myostatin genes throughout evolution. However, the different expression profiles and putative promoter elements in fishes versus mammals suggests that limitations in myostatin function may have evolved recently.


1983 ◽  
Vol 11 (14) ◽  
pp. 4907-4922 ◽  
Author(s):  
J.M. Aiken ◽  
D. McKenzie ◽  
H.-Z. Zhao ◽  
J.C. States ◽  
G.H. Dixon
Keyword(s):  

1981 ◽  
Vol 9 (6) ◽  
pp. 1463-1482 ◽  
Author(s):  
Lashitew Gedamu ◽  
Michael A. Wosnick ◽  
Wayne Connor ◽  
David C. Watson ◽  
Gordon H. Dixon ◽  
...  

1992 ◽  
Vol 285 (1) ◽  
pp. 17-23 ◽  
Author(s):  
S Hübner ◽  
F Michel ◽  
V Rudloff ◽  
H Appelhans

In this report we present the first complete band-3 cDNA sequence of a poikilothermic lower vertebrate. The primary structure of the anion-exchange protein band 3 (AE1) from rainbow trout erythrocytes was determined by nucleotide sequencing of cDNA clones. The overlapping clones have a total length of 3827 bp with a 5′-terminal untranslated region of 150 bp, a 2754 bp open reading frame and a 3′-untranslated region of 924 bp. Band-3 protein from trout erythrocytes consists of 918 amino acid residues with a calculated molecular mass of 101 827 Da. Comparison of its amino acid sequence revealed a 60-65% identity within the transmembrane spanning sequence of band-3 proteins published so far. An additional insertion of 24 amino acid residues within the membrane-associated domain of trout band-3 protein was identified, which until now was thought to be a general feature only of mammalian band-3-related proteins.


1982 ◽  
Vol 93 (1) ◽  
pp. 199-204 ◽  
Author(s):  
P Gupta ◽  
J M Rosen ◽  
P D'Eustachio ◽  
F H Ruddle

A series of mouse-hamster somatic cell hybrids containing a variable number of mouse chromosomes and a constant set of hamster chromosomes have been used to determine the chromosomal location of a family of hormone-inducible genes, the murine caseins. Recombinant mouse cDNA clones encoding the alpha-, beta-, and gamma-caseins were constructed and used in DNA restriction mapping experiments. All three casein cDNAs hybridized to the same set of somatic cell hybrid DNAs isolated from cells containing mouse chromosome 5, while negative hybridization was observed to ten other hybrid DNAs isolated from cells lacking chromosome 5. A fourth cDNA clone, designated pCM delta 40, which hybridized to an abundant 790 nucleotide poly(A)RNA isolated from 6-d lactating mouse mammary tissue, was also mapped to chromosome 5. The chromosomal assignment of the casein gene family was confirmed using a mouse albumin clone. The albumin gene had been previously localized to mouse chromosome 5 by both breeding studies and analogous molecular hybridization experiments. An additional control experiment demonstrated that another hormone-inducible gene, specifying a 620 nucleotide abundant mammary gland mRNA, hybridized to DNA isolated from a different somatic cell hybrid line. These studies represent the first localization of a peptide and steroid hormone-responsive gene family to a single mouse chromosome.


1984 ◽  
Vol 4 (3) ◽  
pp. 529-537
Author(s):  
M R Klass ◽  
S Kinsley ◽  
L C Lopez

The major sperm protein (MSP) of the nematode Caenorhabditis elegans is a low-molecular-weight (15,000) basic protein implicated in the pseudopodial movement of mature spermatozoa. Its synthesis occurs in a specific region of the gonad and is regulated at the level of transcription (M. Klass and D. Hirsh, Dev. Biol. 84:299-312, 1981; S. Ward and M. Klass, Dev. Biol. 92:203-208, 1982; Klass et al., Dev. Biol. 93:152-164, 1982). A developmentally regulated gene family has been identified that codes for this MSP. Whole genomic blots, as well as analysis of genomic clone banks, indicate that there are between 15 and 25 copies of the MSP gene in the nematode genome. Southern blot analysis also indicates that there is no rearrangement or amplification within the MSP gene family during development. No evidence was found of methylation at various restriction sites surrounding the MSP gene family, and similarly, no correlation between methylation and expression was observed. Three distinct members of this MSP gene family have been cloned, and their nucleotide sequences have been determined. Differential screening of a cDNA clone bank made from polyadenylated mRNA from adult males yielded 45 male-specific clones, 32 of which were clones of MSP genes. One of these cDNA clones was found to contain the entire nucleotide sequence for the MSP, including part of the 5' leader and all of the 3' trailing sequence. Genomic clones bearing copies of the MSP genes have been isolated. At least one of the members of this gene family is a pseudogene. Another member of the MSP gene family that has been cloned from genomic DNA contains the entire uninterrupted structural sequence for the MSP in addition to a 5' flanking sequence containing a promoter-like region with the classic TATA box, a sequence resembling the CAAT box, and a putative ribosome-binding sequence. The 3' trailing sequences of the genomic and the cDNA clones contain an AATAAA polyadenylation site.


1999 ◽  
Vol 202 (7) ◽  
pp. 809-816 ◽  
Author(s):  
J.M. Ribeiro ◽  
J.G. Valenzuela

Salivary homogenates of the adult female mosquito Anopheles albimanus have been shown previously to contain a vasodilatory activity associated with a catechol oxidase/peroxidase activity. We have now purified the salivary peroxidase using high-performance liquid chromatography. The pure enzyme is able to relax rabbit aortic rings pre-constricted with norepinephrine. The peroxidase has a relative molecular mass of 66 907 as estimated by mass spectrometry. Amino-terminal sequencing allowed us to design oligonucleotide probes for isolation of cDNA clones derived from the salivary gland mRNA from female mosquitoes. The full sequence of the cDNA demonstrated homology between A. albimanus salivary peroxidase and several members of the myeloperoxidase gene family. A close comparison of A. albimanus salivary peroxidase with canine myeloperoxidase, for which the crystal structure is known, showed that all six disulfide bridges were conserved and demonstrated identity for all five residues associated with a Ca2+-binding site. In addition, 16 of 26 residues shown to be in close proximity to the heme moiety in the canine myeloperoxidase were identical. We conclude that the salivary peroxidase of A. albimanus belongs to the myeloperoxidase gene family. Other possible functions for this molecule in blood feeding are discussed.


Genomics ◽  
1989 ◽  
Vol 4 (2) ◽  
pp. 182-191 ◽  
Author(s):  
M.J. Frenkel ◽  
B.C. Powell ◽  
K.A. Ward ◽  
M.J. Sleigh ◽  
G.E. Rogers
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document